Role of Iron in Alleviating Heavy Metal Stress



Heavy metals naturally present in soils usually result from human activities such as agricultural practices, mining, automobile, sewage processing, and metal industries. Higher concentrations of these metals in surrounding environment showed toxic effects on plants and animals. Heavy metals entered in soil-plant environment through various anthropogenic activities are taken up and accumulated in various plant parts. Higher concentrations of these metals showed toxic symptoms in plants. Heavy metals at higher dosage negatively affect plants physiological, morphological, and biochemical traits. On the other hand, plants used different strategies to cope with damaging effects induced by metal toxicity. There are some metals such as macro and micro nutrients, which are essentially required by plants for their growth and development processes. Micronutrient such as iron plays a key role in minimizing toxic effects of heavy metals and limits their entry in food chain. It has been thoroughly documented by many researchers that Fe has potential to alleviate metal toxicity by limiting metals uptake in different plants. Reports suggested that Fe improves plant physiological, morphological, and biochemical parameters by neutralizing metals toxicity. However, Fe deficiency resulted in malnutrition that affects human population worldwide. Various strategies have been used to enhance food quality, improve Fe uptake from soil and increased Fe shortage through a process known as biofortification. Fe uptake can be enhanced by overexpressing genes. Micronutrients level in plants could also be enhanced through agricultural practices, plant breeding, and biotechnology techniques.


Heavy metals Fe Anthropogenic activities Physiological Morphological Biochemical Micronutrient Biofortification 


  1. Abadia, J., et al. (2011). Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry, 49, 471–482.PubMedCrossRefGoogle Scholar
  2. Ali, S., Zeng, F., Qiu, L., & Zhang, G. (2011). The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biologia Plantarum, 55, 291–296.CrossRefGoogle Scholar
  3. Ali, S., Farooq, M. A., Jahangir, M. M., Abbas, F., Bharwana, S. A., & Zhang, G. P. (2013). Effect of chromium and nitrogen form on photosynthesis and anti-oxidative system in barley. Biologia Plantarum, 57, 758–763.CrossRefGoogle Scholar
  4. Ali, R. K., Najafi, F., & Rezaei, M. (2014). The influence of cadmium toxicity on some physiological parameters as affected by iron in rice (Oryza Sativa L.) plant. Journal of Plant Nutrition, 37, 1202–1213.CrossRefGoogle Scholar
  5. Alvarez-Fernandez, A., et al. (2007). Determination of synthetic ferric chelates used as fertilizers by liquid chromatography-electrospray/mass spectrometry in agricultural matrices. Journal of the American Society for Mass Spectrometry, 18, 37–47.PubMedCrossRefGoogle Scholar
  6. Aoyama, T., et al. (2009). OsYSL18 is a rice iron (III)–deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Molecular Biology, 70, 681–692.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balk, J., & Pilon, M. (2011). Ancient and essential: The assembly of Fe-S cluster in plants. Trends in Plant Science, 16, 218–226.PubMedCrossRefGoogle Scholar
  8. Balk, J., & Schaedler, T. A. (2014). Iron cofactor assembly in plants. Annual Review of Plant Biology, 65, 125–153.PubMedCrossRefGoogle Scholar
  9. Bao, T., Sun, L., Sun, T., Zhang, P., & Niu, Z. (2009). Iron-deficiency induces cadmium uptake and accumulation in Solanum nigrum L. Bulletin of Environmental Contamination and Toxicology, 82, 338–342.PubMedCrossRefGoogle Scholar
  10. Bao, T., Sun, T. H., & Sun, L. N. (2012). Effect of cadmium on physiological responses of wheat and corn to iron deficiency. Journal of Plant Nutrition, 35, 1937–1948.CrossRefGoogle Scholar
  11. Becker, M., & Asch, F. (2005). Iron toxicity in rice-conditions and management concepts. Journal of Plant Nutrition and Soil Science, 168, 558–573.CrossRefGoogle Scholar
  12. Bernard, D. G., Cheng, Y., Zhao, Y., & Balk, J. (2009). An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiology, 151, 590–602.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blair, M. W., & Izquierdo, P. (2012). Use of the advanced backcross- QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theoretical and Applied Genetics, 125, 1015–1031.PubMedCrossRefGoogle Scholar
  14. Boyd, P. W., et al. (2007). Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science, 315, 612–617.PubMedCrossRefGoogle Scholar
  15. Briat, J. F., et al. (2003). Iron utilization and metabolism in plants. Current Opinion in Plant Biology, 10, 276–282.CrossRefGoogle Scholar
  16. Cailliatte, R., Schikora, A., Briat, J. F., Mari, S., & Curie, C. (2010). High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell, 22, 904–917.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chandra, R., Bharagava, R. N., Yadav, S., & Mohan, D. (2009). Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. Journal of Hazardous Materials, 162, 1514–1521.PubMedCrossRefGoogle Scholar
  18. Chatterjee, C., Gopal, R., & Dube, B. K. (2006). Physiological and biochemical responses of French bean to excess cobalt. Journal of Plant Nutrition, 29, 127–136.CrossRefGoogle Scholar
  19. Chen, T., Cai, X., Wu, X., Karahara, I., Schreiber, L., & Lin, J. (2011). Casparian strip development and its potential function in salt tolerance. Plant Signaling & Behavior, 6, 1499–1502.CrossRefGoogle Scholar
  20. Cheng, H., Wang, M., Wong, M. H., & Ye, Z. (2014). Does radial oxygen loss and iron plaque formation on roots alters Cd and Pb uptake and distribution in rice plant tissues? Plant and Soil, 375, 137–148. doi: 10.1007/s11104-013-1945-0.CrossRefGoogle Scholar
  21. Conte, S. S., & Walker, E. L. (2011). Transporters contributing to iron trafficking in plants. Molecular Plant, 4, 464–476.PubMedCrossRefGoogle Scholar
  22. Conte, S., Stevenson, D., Furner, I., & Lloyd, A. (2009). Multiple antibiotic resistance in Arabidopsis is conferred by mutations in a chloroplast-localized transport protein. Plant Physiology, 151, 559–573.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Couturier, J., et al. (2013). The iron–sulfur cluster assembly machineries in plants: Current knowledge and open questions. Frontiers in Plant Science, 4, 259.PubMedPubMedCentralGoogle Scholar
  24. de Dorlodot, S., Lutts, S., & Bertin, P. (2005). Effects of ferrous iron toxicity on the growth and mineral composition of an inter specific rice. Journal of Plant Nutrition, 28, 1–20.CrossRefGoogle Scholar
  25. Durrett, T. P., Gassmann, W., & Rogers, E. E. (2007). The FRD3- mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology, 144, 197–205.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Duy, D., Wanner, G., Meda, A., von Wiren, N., Soll, J., & Philippar, K. (2007). PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell, 19, 986–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Duy, D., Stube, R., Wanner, G., & Philippar, K. (2011). The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiology, 155, 1709–1722.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Eberhard, S., et al. (2008). The dynamics of photosynthesis. Annual Review of Genetics, 42, 463–515.PubMedCrossRefGoogle Scholar
  29. Eggink, L. L., et al. (2004). Synthesis of chlorophyll b: Localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biology, 4, 5.PubMedPubMedCentralCrossRefGoogle Scholar
  30. El-Jendoubi, H., et al. (2014). The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics. Frontiers in Plant Science, 5, 2.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Feng, H., Qian, Y., Gallagher, F. J., Wu, M., Zhang, W., Yu, L., Zhu, Q., Zhang, K., Liu, C. J., & Tappero, R. (2013). Lead accumulation and association with Fe on Typha latiofolia root from an urban brownfield site. Environmental Science and Pollution Research, 20, 3743–3750. doi: 10.1007/s11356-012-1298-x.PubMedCrossRefGoogle Scholar
  32. Fozia, A., Muhammad, A. Z., Muhammad, A., & Zafar, M. K. (2008). Effect of chromium on growth attributes in sunflower (Helianthus annuus L.) Journal of Environmental Sciences, 20, 1475–1480.CrossRefGoogle Scholar
  33. Gratao, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal stressed plants a little easier. Functional Plant Biology, 32, 32481–32494.CrossRefGoogle Scholar
  34. Green, L. S., & Rogers, E. E. (2004). FRD3 controls iron localization in Arabidopsis. Plant Physiology, 136, 2523–2531.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Greipsson, S. (1995). Effect of iron plaque on roots of rice on growth of plants in excess zinc and accumulation of phosphorus in plants in excess copper or nickel. Journal of Plant Nutrition, 18, 1659–1665.CrossRefGoogle Scholar
  36. Grotz, N., & Guerinot, M. L. (2002). Limiting nutrients: An old problem with new solutions? Current Opinion in Plant Biology, 5, 158–163.PubMedCrossRefGoogle Scholar
  37. Hindt, M. N., & Guerinot, M. L. (2012). Getting a sense for signals: Regulation of the plant iron deficiency response. Biochimica et Biophysica Acta, 1823, 1521–1530.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hossain, M. B., Jahiruddin, M., Leoppert, R. H., Panaullah, G. M., Islam, M. R., & Duxbury, J. M. (2009). The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant and Soil, 317, 167–176.CrossRefGoogle Scholar
  39. Hu, Y., Huang, Y. Z., & Liu, Y. X. (2014). Influence of iron plaque on chromium accumulation and translocation in three rice (Oryza sativa L.) cultivars grown in solution culture. Chemistry and Ecology, 30, 29–38.CrossRefGoogle Scholar
  40. Huang, Q., Qi, W., Luo, Z., Yu, Y., Jiang, R., & Li, H. (2015). Effects of root iron plaque on selenite and selenate dynamics in rhizosphere and uptake by rice (Oryza sativa). Plant and Soil, 388, 255–266.CrossRefGoogle Scholar
  41. Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2009). Rice OsYSL15 is an iron-regulated iron (III) deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. The Journal of Biological Chemistry, 284, 3470–3479.PubMedCrossRefGoogle Scholar
  42. Jeong, J., & Guerinot, M. L. (2009). Homing in on iron homeostasis in plants. Trends in Plant Science, 14, 280–285.PubMedCrossRefGoogle Scholar
  43. Jeong, J., Cohu, C., Kerkeb, L., Pilon, M., Connolly, E. L., & Guerinot, M. L. (2008). Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proceedings of the National Academy of Sciences of the United States of America, 105, 10619–10624.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kim, S. A., Punshon, T., Lanzirotti, A., Li, L., Alonso, J. M., Ecker, J. R., Kaplan, J., & Guerinot, M. L. (2006). Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science, 314, 1295–1298.PubMedCrossRefGoogle Scholar
  45. Kobayashi, T., & Nishizawa, N. (2012). Iron uptake, translocation and regulation in higher plants. Annual Review of Plant Biology, 63, 131–152.PubMedCrossRefGoogle Scholar
  46. Koike, S., et al. (2004). OsYSL2 is a rice metal–nicotianamine transporter that is regulated by iron and expressed in the phloem. The Plant Journal, 39, 415–424.PubMedCrossRefGoogle Scholar
  47. Kovacs, K., Kuzmann, E., Vertes, A., Levai, L., Cseh, E., & Fodor, F. (2010). Effect of cadmium on iron uptake in cucumber roots: A Mössbauer-spectroscopic study. Plant and Soil, 327, 49–56.CrossRefGoogle Scholar
  48. Lammertsma, E. I., et al. (2011). Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences of the United States of America, 108, 4035–4040.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lanquar, V., Lelievre, F., Bolte, S., Hames, C., Alcon, C., Neumann, D., Vansuyt, G., Curie, C., Schroder, A., Kramer, U., et al. (2005). Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. The EMBO Journal, 24, 4041–4051.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Layer, G., et al. (2010). Structure and function of enzymes in heme biosynthesis. Protein Science, 19, 1137–1161.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lee, S., Chiecko, J. C., Kim, S. A., Walker, E. L., Lee, Y., Guerinot, M. L., & An, G. (2009). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiology, 150, 786–800.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lenntech Water Treatment and Air Purification. (2004). Water treatment. Rotterdamseweg, Netherlands: Lenntech.Google Scholar
  53. Li, R., Zhou, Z., Zhang, Y., Xie, X., Li, Y., & Shen, X. (2015). Uptake and accumulation characteristics of arsenic and iron plaque in rice at different growth stages. Communications in Soil Science and Plant Analysis, 46, 2509–2522.CrossRefGoogle Scholar
  54. Liu, H. J., Zhang, J. L., & Zhang, F. S. (2007). Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environmental and Experimental Botany, 59, 314–320.CrossRefGoogle Scholar
  55. Liu, H. J., Zhang, J. L., Christie, P., & Zhang, F. S. (2008). Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. The Science of the Total Environment, 394, 361–368.PubMedCrossRefGoogle Scholar
  56. Liu, H. J., Zhang, J. L., Christie, P., & Zhang, F. S. (2010). Influence of iron fertilization on cadmium uptake by rice seedlings irrigated with cadmium solution. Communications in Soil Science and Plant Analysis, 41, 584–594.CrossRefGoogle Scholar
  57. Liu, J., Leng, X., Wang, M., Zhu, Z., & Dai, Q. (2011). Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicology and Environmental Safety, 54, 1304–1309.CrossRefGoogle Scholar
  58. Lopez-Millan, A. F., Morales, F., Abadia, A., & Abadia, J. (2000). Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet: Implications for iron and carbon transport. Plant Physiology, 124, 873–884.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lucca, P., Hurrell, R., & Potrykus, I. (2002). Fighting iron deficiency anemia with iron-rich rice. Journal of the American College of Nutrition, 21, 184–190.CrossRefGoogle Scholar
  60. Lung’aho, M. G., et al. (2011). Genetic and physiological analysis of iron biofortification in maize kernels. PloS One, 6, 20429.CrossRefGoogle Scholar
  61. Masuda, H., et al. (2013). Iron biofortification of rice using different transgenic approaches. Rice, 6, 40.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mithofer, A., Schulze, B., & Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Letters, 566, 1–5.PubMedCrossRefGoogle Scholar
  63. Monni, S., Salemma, M., & Millar, N. (2000). The tolerance of Empetrumnigrum to copper and nickel. Environmental Pollution, 109, 221–229.PubMedCrossRefGoogle Scholar
  64. Morrissey, J., et al. (2009). The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell, 21, 3326–3338.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Msilini, N., et al. (2011). Inhibition of photosynthetic oxygen evolution and electron transfer from the quinone acceptor QA to QB by iron deficiency. Photosynthesis Research, 107, 247–256.PubMedCrossRefGoogle Scholar
  66. Nada, E., Ferjani, B. A., Ali, R., Imed, B. M., & Makki, B. (2007). Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiologia Plantarum, 29, 57–62. doi: 10.1007/s11738-006-0009-y.CrossRefGoogle Scholar
  67. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216. doi: 10.1007/s10311-010-0297-8.CrossRefGoogle Scholar
  68. Nakanishi, H., Ogawa, I., Ishimaru, Y., Mori, S., & Nishizawa, N. K. (2006). Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+transporters OsIRT1 and OsIRT2 in rice. Soil Science & Plant Nutrition, 52, 464–469.CrossRefGoogle Scholar
  69. Nouet, C., Motte, P., & Hanikenne, M. (2011). Chloroplastic and mitochondrial metal homeostasis. Trends in Plant Science, 16, 395–404.PubMedCrossRefGoogle Scholar
  70. Passariello, B., Giuliano, V., Quaresima, S., Barbaro, M., Caroli, S., Forte, G., Garelli, G., & Iavicoli, I. (2002). Evaluation of the environmental contamination at an abandoned mining site. Microchemical Journal, 73, 245–250.CrossRefGoogle Scholar
  71. Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 447–465.PubMedCrossRefGoogle Scholar
  72. Qadir, S., Hameed, A., Nisa, N. T., Azooz, M. M., Wani, M. R., Hasannuzaman, M., Kazi, A. G., & Ahmad, P. (2014). Chapter 1 Brassicas: Responses and tolerance to heavy metal stress. In Improvement of crops in the era of climatic changes (10.1007/978–1–4614-8824-8_1 ed.). New York: Springer. Scholar
  73. Qureshi, M. I., D’Amici, G. M., Fagioni, M., Rinalducci, S., & Zolla, L. (2010). Iron stabilizes thylakoid protein-pigment complexes in indian mustard during Cd-phytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. Journal of Plant Physiology, 167, 761–770. doi: 10.1016/j.jplph.2010.01.017.PubMedCrossRefGoogle Scholar
  74. Reeves, R. D., & Baker, A. J. M. (2000). Metal-accumulating plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 193–229). New York: Wiley.Google Scholar
  75. Rellan-Alvarez, R., Abadia, J., & Alvarez-Fernandez, A. (2008). Formation of metal–nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange: A study by electrospray ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 22, 1553–1562.PubMedCrossRefGoogle Scholar
  76. Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric–chelate reductase for iron uptake from soils. Nature, 397, 694–697.PubMedCrossRefGoogle Scholar
  77. Rodriguez-Hernandez, M. C., Bonifas, I., Alfaro-De la Torre, M. C., Flores-Flores, J. L., Banuelos-Hernandez, B., & Patino-Rodriguez, O. (2015). Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typha latifolia: A study of two pore channel (TPC1) gene responses. Environmental and Experimental Botany, 115, 38–48.CrossRefGoogle Scholar
  78. Römheld, V., & Nikolic, M. (2006). Iron. In A. V. Barker & D. J. Pilbeam (Eds.), Handbook of plant nutrition (pp. 329–350). Boca Raton: CRC Press.Google Scholar
  79. Roschzttardtz, H., Conejero, G., Curie, C., & Mari, S. (2009). Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo. Plant Physiology, 151, 1329–1338.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Roschzttardtz, H., Grillet, L., Isaure, M. P., Conejero, G., Ortega, R., Curie, C., & Mari, S. (2011). Plant cell nucleolus as a hot spot for iron. The Journal of Biological Chemistry, 286, 27863–27866.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Shao, G., Chen, M., Wang, W., Mou, R., & Zhang, G. (2007). Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regulation, 53, 33–42.CrossRefGoogle Scholar
  82. Shao, G. S., Chen, M. X., Wang, D. Y., CM, X., Mou, R. X., Cao, Z. Y., & Zhang, X. F. (2008). Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology. Science in China Series C: Life Sciences, 51, 245–253.PubMedCrossRefGoogle Scholar
  83. Sharma, S. (2007). Adaptation of photosynthesis under iron deficiency in maize. Journal of Plant Physiology, 164, 1261–1267.PubMedCrossRefGoogle Scholar
  84. Sharma, S. S., Kaul, S., Metwally, A., Goyal, K. C., Finkemeier, I., & Dietz, K. J. (2004). Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science, 166, 1287–1295.CrossRefGoogle Scholar
  85. Shaw, G. C., Cope, J. J., Li, L., Corson, K., Hersey, C., Ackermann, G. E., Gwynn, B., Lambert, A. J., Wingert, R. A., Traver, D., et al. (2006). Mitoferrin is essential for erythroid iron assimilation. Nature, 440, 96–100.PubMedCrossRefGoogle Scholar
  86. Sheng, S. G., Xue, C. M., Ying, W. D., Mei, X. C., Yun, C. Z., & ZX, F. (2008). Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology. Science in China. Series C, Life Sciences, 51, 245–253.CrossRefGoogle Scholar
  87. Shimoni-Shor, E., Hassidim, M., Yuval-Naeh, N., & Keren, N. (2010). Disruption of Nap14, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over accumulation of transition metals and in aberrant chloroplast structures. Plant, Cell & Environment, 33, 1029–1038.CrossRefGoogle Scholar
  88. Syu, C. H., Jiang, P. Y., Huang, H. H., Chen, W. T., Lin, T. H., & Lee, D. Y. (2013). Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter. Soil Science & Plant Nutrition, 59, 463–471.CrossRefGoogle Scholar
  89. Takahashi, M. T., Nakanishi, H., Kawasaki, S., Nishizawa, N. K., & Mori, S. (2001). Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnology, 19, 466.PubMedCrossRefGoogle Scholar
  90. Tako, E., et al. (2013). High bioavailability iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Nutrition Journal, 12, 3.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Vert, G., et al. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 14, 1223–1233.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Vert, G., Barberon, M., Zelazny, E., Seguela, M., Briat, J. F., & Curie, C. (2009). Arabidopsis IRT2 cooperates with the high affinity iron uptake system to maintain iron homeostasis in root epidermal. Cells. Planta, 229, 1171–1179.PubMedCrossRefGoogle Scholar
  93. Vigani, G., Maffi, D., & Zocchi, G. (2009). Iron availability affects the function of mitochondria in cucumber roots. The New Phytologist, 182, 127–136.PubMedCrossRefGoogle Scholar
  94. Walker, E. L., & Connolly, E. L. (2008). Time to pump iron: Iron-deficiency signaling mechanisms of higher plants. Current Opinion in Plant Biology, 11, 530–535.PubMedCrossRefGoogle Scholar
  95. Welch, R. M., & Graham, R. D. (2004). Breeding of micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55, 353–364.PubMedCrossRefGoogle Scholar
  96. White, P. J., & Broadley, M. R. (2005). Biofortifying crops with essential mineral elements. Trends in Plant Science, 10, 586–593.PubMedCrossRefGoogle Scholar
  97. Wintz, H., Fox, T., & Vulpe, C. (2002). Responses of plants to iron, zinc and copper deficiencies. Biochemical Society Transactions, 30, 766–768.PubMedCrossRefGoogle Scholar
  98. Xenidis, A., Stouraiti, C., & Papassiooi, N. (2010). Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron. Journal of Hazardous Materials, 177, 929–937.PubMedCrossRefGoogle Scholar
  99. Xu, B., & Yu, S. (2013). Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa). Annals of Botany, 111, 1189–1195.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Xu, Y., et al. (2012). Molecular mapping of QTLs for grain zinc, iron, and protein concentration of across two environments. Field Crops Research, 138, 57–62.CrossRefGoogle Scholar
  101. Yadavalli, V., et al. (2012). Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii. PloS One, 7, 35084.CrossRefGoogle Scholar
  102. Zhou, X. B., & Shi, W. M. (2007). Effect of root surface iron plaque on se translocation and uptake by Fe-deficient rice. Pedosphere, 17(5), 580–587.CrossRefGoogle Scholar
  103. Zocchi, G. (2006). Metabolic changes in iron-stressed dicotyledonous plants. In L. L. Barton & J. Abadia (Eds.), Iron nutrition in plants and rhizospheric microorganisms (pp. 359–370). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  104. Zornoza, P., Sánchez-Pardo, B., & Carpena, R. R. O. (2010). Interaction and accumulation of manganese and cadmium in the manganese accumulator Lupinus albus. Journal of Plant Physiology, 167, 1027–1032. doi: 10.1016/j.jplph.2010.02.011.PubMedCrossRefGoogle Scholar
  105. Zuo, Y., & Zhang, F. (2009). Iron and zinc biofortification strategies in dicot plants by intercropping with graminaceous species. A review. Agronomy for Sustainable Development, 29, 63–71.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Environmental Sciences and EngineeringGovernment College UniversityFaisalabadPakistan
  2. 2.Department of BotanyGovernment College UniversityFaisalabadPakistan

Personalised recommendations