Skip to main content

Cold-Active Enzymes from Cold-Adapted Yeasts

  • Chapter
  • First Online:

Abstract

Cold-adapted yeasts include psychrophiles or psychrotolerant nonconventional species able to survive and grow at low temperatures. They represent an important source of biological diversity that has developed a set of structural and functional adaptation strategies to overcome the adverse effects of cold (sometimes associated with other limiting conditions). Among them, the production of cold-active enzymes is probably one of the most efficient adaptations of the eukaryotic physiology at low temperatures. Current literature reports that cold-active enzymes exhibit several advantages than their mesophilic and thermophilic homologues and may successfully replace traditional catalysts in a range of industrial applications carried out at low and moderate temperatures. Due to their singular traits, some cold-active hydrolases (i.e., lipases, amylases, and proteases,) isolated from cold-adapted yeasts have been studied since some decades, while some other, namely, xylanases, chitinases, pectinolytic enzymes, glycosidases, phytases, and invertases, have recently attracted a rising attention for their biotechnological potential from the academy and industry for both food and nonfood exploitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adapa V, Ramya LN, Pulicherla KK, Rao KR (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172:2324–2337

    Article  CAS  PubMed  Google Scholar 

  • Alcaíno J, Cifuentes V, Baeza M (2015) Physiological adaptations of yeasts living in cold environments and their potential applications. World J Microbiol Biotechnol 31:1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Alias N, Ahmad Mazian M, Salleh AB, Basri M, Rahman RN (2014) Molecular cloning and optimization for high level expression of cold-adapted serine protease from Antarctic yeast Glaciozyma antarctica PI12. Enzym Res 2014:1–20

    Article  CAS  Google Scholar 

  • Amoresano A, Andolfo A, Corsaro MM, Zocchi I, Petrescu I, Gerday C, Marino G (2000) Structural characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiology 10:451–458

    Article  CAS  PubMed  Google Scholar 

  • An GH, Schuman DB, Johnson EA (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol 55:116–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrewes AG, Phaff HJ, Starr MP (1976) Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry 15:1003–1007

    Article  CAS  Google Scholar 

  • Asraf SS, Gunasekaran P (2010) Current trends of ß-galactosidase research and application. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 880–890

    Google Scholar 

  • Bai Z, Jin B, Li Y, Chen J, Li Z (2008) Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation. J Environ Sci (China) 20:353–358

    Article  CAS  Google Scholar 

  • Banerjee S, Ghosh K (2014) Enumeration of gut associated extracellular enzyme-producing yeasts in some freshwater fishes. J Appl Ichthyol 30:986–993

    Article  CAS  Google Scholar 

  • Barahona S, Yuivar Y, Socias G, Alcaíno J, Cifuentes V, Baeza M (2016) Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles 20:479–491

    Article  CAS  PubMed  Google Scholar 

  • Barghini P, Moscatelli D, Garzillo AM, Crognale S, Fenice M (2013) High production of cold-tolerant chitinases on shrimp wastes in bench-top bioreactor by the Antarctic fungus Lecanicillium muscarium CCFEE 5003: bioprocess optimization and characterization of two main enzymes. Enzym Microb Technol 53:331–338

    Article  CAS  Google Scholar 

  • Belda I, Conchillo LB, Ruiz J, Navascués E, Marquina D, Santos A (2016) Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int J Food Microbiol 223:1–8

    Article  CAS  PubMed  Google Scholar 

  • Białkowska A, Turkiewicz M (2014) Miscellaneous cold-active yeast enzymes of industrial importance. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 377–396

    Chapter  Google Scholar 

  • Birgisson H, Delgado O, García Arroyo L, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7:185–193

    CAS  PubMed  Google Scholar 

  • Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Escherichia coli. J Biotechnol 125:474–483

    Article  CAS  PubMed  Google Scholar 

  • Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges TA, de Souza AT, Squina FM, Riaño-Pachón DM, Corrêa dos Santos RA, Machado E, Velasco de Castro Oliveira J, Damásio ARL, Goldman GH (2014) Biochemical characterization of an endoxylanase from Pseudozyma brasiliensis sp. nov. strain GHG001 isolated from the intestinal tract of Chrysomelidae larvae associated to sugarcane roots. Proc Biochem 49:77–83

    Article  CAS  Google Scholar 

  • Boundy-Mills K, Glantschnig E, Roberts IN, Yurkov A, Casaregola S, Daniel HM, Groenewald M, Turchetti B (2016) Yeast culture collections in the twenty-first century: new opportunities and challenges. Yeast 33:243–260

    Article  CAS  PubMed  Google Scholar 

  • Brizzio S, Turchetti B, de Garcìa V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities (EEA) of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  CAS  PubMed  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Walczak M (2013) Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int Biodeter Biodegr 84:104–110

    Article  CAS  Google Scholar 

  • Burton SG (2003) Oxidizing enzymes as biocatalyst. Trends Biotechnol 21:543–549

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Margesin R (2014a) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg

    Book  Google Scholar 

  • Buzzini P, Margesin R (2014b) Cold-adapted Yeasts: a lesson from the cold and a challenge for the XXI century. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Buzzini P, Vaughan-Martini A (2006) Yeast biodiversity and biotechnology. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Heidelberg, pp 533–559

    Chapter  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Cabeza MS, Baca FL, Puntes EM, Loto F, Baigorí MD, Morata VI (2011) Selection of psychrotolerant microorganisms producing cold-active pectinases for biotechnological processes at low temperature. Food Technol Biotechnol 49:187–195

    CAS  Google Scholar 

  • Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrasco M, Villarreal P, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2016) Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 16:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavicchioli R, Tortsen T (2000) Extremophilic. In: Lederberg J (ed) Encyclopaedia of microbiology, vol 2, 2nd edn. Academic, London, pp 317–337

    Google Scholar 

  • Cerqueira N, Brs N, Joo M, Alexandrino P (2012) Glycosidases – a mechanistic overview. In: Chang CF (ed) Carbohydrates – comprehensive studies on glycobiology and glycotechnology. InTech, Rijeka, pp 117–134

    Google Scholar 

  • Chaud LC, Lario LD, Bonugli-Santos RC, Sette LD, Pessoa Junior A, Felipe MD (2016) Improvement in extracellular protease production by the marine Antarctic yeast Rhodotorula mucilaginosa L7. N Biotechnol 33:807–814

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008) Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis. Biomacromolecules 9:463–471

    Article  CAS  PubMed  Google Scholar 

  • Contreras G, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J (2015) Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World J Microbiol Biotechnol 31:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  CAS  PubMed  Google Scholar 

  • Das P, Ghosh K (2014) The presence of phytase in yeasts isolated from the gastrointestinal tract of four major carps [Labeo rohita (Hamilton, 1822), Catla catla (Hamilton, 1822), Cirrhinus mrigala (Hamilton, 1822), Hypophthalmichthys molitrix (Valenciennes, 1844)], climbing perch [Anabas testudineus (Bloch, 1792)] and Mozambique tilapia [Oreochromis mossambicus (Linnaeus, 1758)]. J Appl Ichthyol 30:403–407

    Article  Google Scholar 

  • de García V, Brizzio S, van Broock M (2012) Yeasts from glacial ice of Patagonian Andes, Argentina. FEMS Microbiol Ecol 82:540–550

    Article  PubMed  CAS  Google Scholar 

  • De Mot R, Verachtert H (1987) Purification and characterization of extracellular α-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. Eur J Biochem 164:643–654

    Article  PubMed  Google Scholar 

  • Divakar S (2013) Enzymatic transformation. Springer, New Delhi

    Book  Google Scholar 

  • Divya K, Naga Padma P (2014) Yeast isolates from diverse sources for cold-active polygalacturonase and amylase production. Int J Sci Technol Res 3:145–148

    Google Scholar 

  • Dominguez de Maria P, Carboni-Oerlemans C, Tuin B, Bergeman G, Meer A, Gemert R (2005) Biotechnological applications of Candida antarctica lipase A: state-of-the-art. J Mol Catal B 37:36–46

    Article  CAS  Google Scholar 

  • Duarte AW, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LC, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • El-Fallal A, Abou M, El-Sayed A, Omar N (2012) Starch and microbial α-amylases: from concepts to biotechnological applications. In: Chang CF (ed) Carbohydrates – comprehensive studies on glycobiology and glycotechnology. InTech, Rijeka, pp 459–488

    Google Scholar 

  • Emond S, Montanier C, Nicaud JM, Marty A, Monsan P, Andre I, Remaud-Simeon M (2010) New efficient recombinant expression system to engineer Candida antarctica lipase B. Appl Environ Microbiol 76:2684–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ericsson DJ, Kasrayan A, Johansson P, Berqfors T, Sandstrom AG, Bäckvall JE, Mowbray SL (2008) X-ray structure of Candida antarctica lipase B shows a novel lid structure and a likely mode of interfacial activation. J Mol Biol 376:109–119

    Article  CAS  PubMed  Google Scholar 

  • Faber K (2004) Biotransformations in organic chemistry. A textbook, 5th edn. Springer, Heidelberg

    Book  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Forde J, Vakurov A, Gibson TD, Millner P, Whelehan M, Marisin IW, Ó’Fágáin C (2010) Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. J Mol Cat B 66:203–209

    Article  CAS  Google Scholar 

  • Forti L, Di Mauro S, Cramarossa MR, Filippucci S, Turchetti B, Buzzini P (2015) Non-conventional yeasts whole cells as efficient biocatalysts for the production of flavors and fragrances. Molecules 20:10377–10398

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Galdino AS, Silva RN, Lottermann MT, Alvares AC, de Moraes LM, Torres FA, de Freitas SM, Ulhoa CJ (2011) Biochemical and structural characterization of amy1: an alpha-amylase from Cryptococcus flavus expressed in Saccharomyces cerevisiae. Enzym Res 30:157294

    Google Scholar 

  • Gerday C (2014) Fundamentals of cold-active enzymes. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg, pp 325–350

    Chapter  Google Scholar 

  • Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342:119–131

    Article  CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trend Biotechnol 18:103–107

    Article  CAS  Google Scholar 

  • Golubev WI (1995) Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast 11:101–110

    Article  CAS  PubMed  Google Scholar 

  • Gomes J, Gomes I, Steiner W (2000) Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles 4:227–235

    Article  CAS  PubMed  Google Scholar 

  • Goretti M, Ponzoni C, Caselli E, Marchegiani E, Cramarossa MR, Turchetti B, Buzzini P, Forti L (2009) Biotransformation of electron-poor alkenes by yeasts: asymmetric reduction of (4S)-(+)-carvone by yeast enoate reductases. Enzym Microb Technol 45:463–468

    Article  CAS  Google Scholar 

  • Goretti M, Ponzoni C, Caselli E, Marchegiani E, Cramarossa MR, Turchetti B, Forti L, Buzzini P (2011) Bioreduction of α,β-unsaturated ketones and aldehydes by non-conventional yeast (NCY) whole-cells. Biores Technol 102:3993–3998

    Article  CAS  Google Scholar 

  • Gotor-Fernandéz V, Busto E, Gotor V (2006) Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348:797–812

    Article  CAS  Google Scholar 

  • Gruber CC, Pleiss J (2012) Lipase B from Candida antarctica binds to hydrophobic substrate – water interfaces via hydrophobic anchors surrounding the active site entrance. J Mol Catal B 84:48–54

    Article  CAS  Google Scholar 

  • Gummadi SN, Kumar DS (2005) Microbial pectic transeliminases. Biotechnol Lett 27:451–458

    Article  CAS  PubMed  Google Scholar 

  • Gutarra MLE, Romero O, Abian O, Torres FAG, Freire DMG, Castro AM, Guisan JM, Palomo JM (2011) Enzyme surface glycosylation in the solid phase: improved activity and selectivity of Candida antarctica lipase B. Chem Cat Chem 3:1902–1910

    CAS  Google Scholar 

  • Guttmann S, Neumann S, Ringer L, Losche K, Helmke E (2014) Use of enzymes to preserve baked products. Bak Biscuit 2:70–73

    Google Scholar 

  • Habeych DI, Juhl PB, Pleiss J, Venegas D, Eggink G, Boeriu CG (2011) Biocatalytic synthesis of polyesters from sugar-based building blocks using immobilized Candida antarctica lipase B. J Mol Catal B 71:1–9

    Article  CAS  Google Scholar 

  • Hamada S, Seike Y, Tanimori S, Sakamoto T, Kishida M (2011) Characterization of D-galacturonate reductase purified from the psychrophilic yeast species Cryptococcus diffluens. J Biosci Bioeng 111:518–521

    Article  CAS  PubMed  Google Scholar 

  • Hamid B, Singh P, Mohiddin FA, Sahay S (2013) Partial characterization of cold-active β-galactosidase activity produced by Cystophallobaidium capatitum SPY11 and Rodotorella musloganosa PT1. Endocytobiosis Cell Res 24:23–26

    Google Scholar 

  • Henrissat B, Sulzenbacher G, Bourne Y (2008) Glycosyltransferases, glycoside hydrolases: surprise, surprise. Curr Opin Struct Biol 18:527–533

    Article  CAS  PubMed  Google Scholar 

  • Hirimuthugoda NY, Chi ZM, Li XY, Wang L, Wu LF (2006) Diversity of phytase-producing marine yeasts. Cienc Mar 32:673–682

    Google Scholar 

  • Hirimuthugoda NY, Chi Z, Wu L (2007) Probiotic yeasts with phytase activity identified from the gastrointestinal tract of sea cucumbers. SPC Beche de Mer Inf Bull 26:31–33

    Google Scholar 

  • Horner TW, Dunn ML, Eggett DL, Ogden LV (2011) β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. J Dairy Sci 94:3242–3249

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Qin Y, Tao YS, Zhu XL, Peng CT, Ullah N (2016) Potential of glycosidase from non-Saccharomyces isolates for enhancement of wine aroma. J Food Sci 81:M935–M943

    Article  CAS  PubMed  Google Scholar 

  • Huang H (2009) Novel low-temperature-active phytase from Erwinia carotovora var. carotovota ACCC 10276. J Microbiol Biotechnol 19:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Husain Q (2010) Beta galactosidases and their potential applications: a review. Crit Rev Biotechnol 30:41–62

    Article  CAS  PubMed  Google Scholar 

  • Huston AL (2008) Biotechnological aspects of cold-adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Heidelberg, pp 347–363

    Chapter  Google Scholar 

  • Jain J, Sapna J, Singh B (2016) Characteristics and biotechnological applications of bacterial phytases. Proc Biochem 51:159–169

    Article  CAS  Google Scholar 

  • Janeček Š, Svensson B, MacGregor EA (2014) α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 71:1149–1170

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, Echavarri-Erasun C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 21–44

    Chapter  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Juhl PB, Doderer K, Hollmann F, Thum O, Pleiss J (2010) Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. J Biotechnol 150:474–480

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki MK, de Cassia GR, da Conceicao Silva SL, Aoki C (2013) Biotechnological advances in fungal invertases. In: Rai M (ed) Fungal enzymes. CRC Press, Boca Raton, FL, pp 1–30

    Google Scholar 

  • Kahveci D, Xu X (2012) Bioimprinted immobilization of Candida antarctica lipase A for concentration of omega-3 polyunsaturated fatty acids. J Am Oil Chem Soc 89:1839–1845

    Article  CAS  Google Scholar 

  • Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451

    Article  CAS  Google Scholar 

  • Krishna H, Persson MM, Bornscheuer UT (2002) Enantioselective transesterification of a tertiary alcohol by lipase a from Candida antarctica. Tetrahedron Asymmetry 13:2693–2696

    Article  Google Scholar 

  • Kritzinger SM, Kilian SG, Potgieter MA, du Preez JC (2003) The effect of production parameters on the synthesis of the prebiotic trisaccharide, neokestose, by Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Enzym Microb Technol 32:728–737

    Article  CAS  Google Scholar 

  • Kuddus M, Roohi AJM, Ramteke PW (2011) An overview of cold-active microbial α-amylase: adaptation strategies and biotechnological potentials. Biotechnology 10:246–258

    Article  CAS  Google Scholar 

  • Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  CAS  Google Scholar 

  • Kumar P, Suneetha V (2016) Microbial pectinases: wonderful enzymes in fruit juice clarification. Int J MediPharm Res 2:119–127

    Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959

    Article  CAS  Google Scholar 

  • Kumar D, Rajesh S, Balashanmugam P, Rebecca LJ, Kalaichelvan PT (2013) Screening, optimization and application of extracellular phytase from Bacillus megaterium isolated from poultry waste. J Mod Biotechnol 2:46–52

    Google Scholar 

  • Lario LD, Chaud L, Almeida M, Converti A, Sette LD, Pessoa A Jr (2015) Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7. Fungal Biol 119:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Lei XG, Weaver JD, Mullaney E, Ullah AH, Azain MJ (2013) Phytase, a new life for an “old” enzyme. Annu Rev Anim Biosci 1:283–309

    Article  PubMed  CAS  Google Scholar 

  • Li H, Chi Z, Duan X, Wang L, Sheng J, Wu L (2007a) Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Proc Biochem 42:462–465

    Article  CAS  Google Scholar 

  • Li H, Chi Z, Wang X, Ma C (2007b) Amylase production by the marine yeast Aureobasidium pullulans N13d. J Ocean Univ China 6:60–65

    Article  CAS  Google Scholar 

  • Liese A, Weelbach K, Wandrey C (2000) Industrial BioTransformations, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  • Linde D, Macias I, Fernández-Arrojo L, Plou FJ, Jiménez A, Fernández-Lobato M (2009) Molecular and biochemical characterization of a β-fructofuranosidase from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 75:1065–1073

    Article  CAS  PubMed  Google Scholar 

  • Maicas S, Mateo J (2016) Microbial glycosidases for wine production. Beverages 2:20

    Article  Google Scholar 

  • Maiorano AE, Piccoli RM, da Silva ES, de Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett 30:1867–1877

    Article  CAS  PubMed  Google Scholar 

  • Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262

    Article  PubMed  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2009) Biotechnological applications of cold-adapted organisms. Springer, Heidelberg

    Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459

    Article  CAS  PubMed  Google Scholar 

  • Miletić N, Loos K (2009) Over-stabilization of chemically modified and cross-linked Candida antarctica lipase B using various epoxides and diepoxides. Aust J Chem 62:799–805

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem H, Rashid MH, Siddique MH, Azeem F, Muzammil S, Javed MR, Ali MA, Rasul I, Riaz M (2015) Microbial invertases: a review on kinetics, thermodynamics, physiochemical properties. Proc Biochem 50:1202–1210

    Article  CAS  Google Scholar 

  • Naga Padma P, Anuradha K, Reddy G (2011) Pectinolytic yeast isolates for cold-active polygalacturonase production. Innovative Food Sci Emerg Technol 12:178–181

    Article  CAS  Google Scholar 

  • Nakagawa T, Yamada K, Miyaji T, Tomizuka N (2002) Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J Biosci Bioeng 94:175–177

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nagaoka T, Taniguchi S, Miyaji T, Tomizuka N (2004) Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Lett Appl Microbiol 38:383–387

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005a) Cold-active polygalacturonase from psychrophilic basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biosci Biotechnol Biochem 69:419–421

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N (2005b) A cold-active pectin lyase from the psychrophilic and basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biotechnol Appl Biochem 42:193–196

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Ikehata R, Uchino M (2006) Cold-active acid β-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79

    Article  CAS  PubMed  Google Scholar 

  • Nampoothiri KM, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A (2004) Process optimization for antifungal chitinase production by Trichoderma harzianum. Proc Biochem 39:1583–1590

    Article  CAS  Google Scholar 

  • Nuobariene L, Hansen AS, Jespersen L, Arneborg N (2011) Phytase-active yeasts from grain-based food and beer: phytase-active yeasts. J Appl Microbiol 110:1370–1380

    Article  CAS  PubMed  Google Scholar 

  • Nuobariene L, Arneborg N, Hansen ÅS (2014) Phytase active yeasts isolated from bakery sourdoughs. In: Proceedings of 9th baltic conference on food science and technology, FOODBALT 2014. Jelgava, Latvia, p 223

    Google Scholar 

  • O’Lenick AJ Jr, O’Lenick KA (2006) Personal care applications of surfactants based upon alkyl p lyglycosides. US Patent US 7045506 B1

    Google Scholar 

  • Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13:1–55

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Biores Technol 77:203–214

    Article  CAS  Google Scholar 

  • Park I, Cho J (2011) The phytase from Antarctic bacterial isolate, Pseudomonas sp. JPK1 as a potential tool for animal agriculture to reduce manure phosphorus excretion. Afr J Agric Res 6:1398–1406

    Google Scholar 

  • Patel RN (2004) Biocatalytic synthesis of chiral pharmaceutical intermediates. Food Technol Biotechnol 42:305–325

    CAS  Google Scholar 

  • Patel S, Goyal A (2011) Functional oligosaccharides: production, properties and applications. World J Microbiol Biotechnol 27:1119–1128

    Article  CAS  Google Scholar 

  • Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzym Microb Technol 26:473–483

    Article  CAS  Google Scholar 

  • Patkar SA, Björkling F, Zundel M, Schulein M, Svendsen A, Heldt-Hansen HP, Gormsen E (1993) Purification of two lipases from Candida antarctica and their inhibition by various inhibitors. Ind J Chem Sect B 32:76–80

    Google Scholar 

  • Pavlova K, Angelova G, Savova I, Grigorova D, Kupenov L (2002) Studies of Antarctic yeast for β-glucosidase production. World J Microbiol Biotechnol 18:569–573

    Article  CAS  Google Scholar 

  • Pavlova K, Gargova S, Hristozova T, Tankova Z (2008) Phytase from Antarctic yeast strain Cryptococcus laurentii ALn. Folia Microbiol 53:29–34

    Article  CAS  Google Scholar 

  • Pazgier M, Turkiewicz M, Kalinowska H, Bielecki S (2003) The unique cold-adapted extracellular subtilase from psychrophilic yeast Leucosporidium antarcticum. J Mol Catal B Enzym 21:39–42

    Article  CAS  Google Scholar 

  • Pedrolli DB, Monteiro AC, Gomes E, Carmona EC (2009) Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol J 3:9–18

    Article  CAS  Google Scholar 

  • Petrescu I, Lamotte-Brasseur J, Chessa J-P, Ntarima P, Clayessens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144

    Article  CAS  PubMed  Google Scholar 

  • Pulicherla KK, Ghosh M, Kumar PS, Rao KRSS (2011) Psychrozymes – the next generation industrial enzymes. J Mar Sci Res Dev 1:102

    Article  Google Scholar 

  • Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM (2011) Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact 10:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjan K, Sahay S (2013) Identification of phytase producing yeast and optimization and characterization of extracellular phytase from Candida parapsilosis. Int J Sci Nat 4:583–590

    CAS  Google Scholar 

  • Ranjan K, Lone MA, Sahay S (2016) Detergent compatible cold-active alkaline amylases from Clavispora lusitaniae CB13. J Microbiol Biotechnol Food Sci 5:306–310

    Article  CAS  Google Scholar 

  • Rashid FAA, Rahim RA, Ibrahim D (2010) Identification of lipase-producing psychrophilic yeast, Leucosporidium sp. Int J Microbiol 9(1). doi:10.5580/1215

  • Raspor P, Zupan J (2006) Yeasts in extreme environments. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Heidelberg, pp 371–417

    Chapter  Google Scholar 

  • Rather M, Mishra S (2013) β-Glycosidases: an alternative enzyme based method for synthesis of alkyl-glycosides. Sustain Chem Process 1:7

    Article  CAS  Google Scholar 

  • Ray MK, Devi KU, Kumar GS, Shivaji S (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69:363–372

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (1997) Psychrophilic bacteria: molecular adaptations of membrane lipids. Comp Biochem Phys A 118:489–493

    Article  CAS  Google Scholar 

  • Sabri A, Jacques P, Wekkers F, Bare G, Hiligsmann S, Moussaïf M, Thonart DP (2000) Effect of temperature on growth of psychrophilic and psychrotrophic members of Rhodotorula aurantiaca. Appl Biochem Biotechnol 84–86:391–399

    Article  PubMed  Google Scholar 

  • Sahay H, Babu BK, Singh S, Kaushik R, Saxena AK, Arora DK (2013) Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes. J Basic Microbiol 53:703–714

    Article  CAS  PubMed  Google Scholar 

  • Saima KM, Roohi M, Ahmad IZ (2013) Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J Gen Eng Biotechnol 11:39–46

    Article  Google Scholar 

  • Sandhya C, Adapa LK, Nampoothiri KM, Binod P, Szakacs G, Pandey A (2004) Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J Basic Microbiol 44:49–58

    Article  CAS  PubMed  Google Scholar 

  • Scorzetti G, Petrescu I, Yarrow D, Fell JW (2000) Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. Antonie Van Leeuwenhoek 77:153–157

    Article  CAS  PubMed  Google Scholar 

  • Sharaf EF (2005) A potent chitinolytic activity of Alternaria alternata isolated from Egyptian black sand. Polish J Microbiol 54:145–151

    Google Scholar 

  • Sharma A, Satyanarayana T (2013) Microbial acid-stable α-amylases: characteristics, genetic engineering and applications. Proc Biochem 48:201–211

    Article  CAS  Google Scholar 

  • Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42 β-galactosidase from a psychrophilic Antarctic Planococcus isolate. Appl Environ Microbiol 66:2438–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Singh P, Singh MV, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic. Cryobiology 68:122–128

    Article  CAS  PubMed  Google Scholar 

  • Solano DM, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM (2012) Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Biores Technol 115:196–207

    Article  CAS  Google Scholar 

  • Song C, Chi Z, Li J, Wang X (2010) β-Galactosidase production by the psychrotolerant yeast Guehomyces pullulans 17–1 isolated from sea sediment in Antarctica and lactose hydrolysis. Bioprocess Biosyst Eng 33:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Souza CP, Almeida BC, Colwell RR, Rivera IN (2011) The importance of chitin in the marine environment. Mar Biotechnol (NY) 13:823–830

    Article  CAS  Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  CAS  PubMed  Google Scholar 

  • Steensels J, Snoek T, Meersman E, Picca Nicolino M, Voordeckers K, Verstrepen KJ (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen AM (1995) Food polysaccharides and their applications, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Straathof AJJ, Panke S, Schmidt A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  PubMed  Google Scholar 

  • Szczesna-Antczak M, Kaminska J, Florczak T, Turkiewicz M (2014) Cold-active yeast lipases: recent issues and future prospects. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Heidelberg

    Google Scholar 

  • Tapre AR, Jain RK (2014) Pectinases: enzymes for fruit processing industry. Int Food Res J 21:447–453

    CAS  Google Scholar 

  • Tobe S, Takami T, Ikeda S, Mitsugi K (1976) Production and some enzymatic properties of alkaline proteinase by Candida lipolytica. Agric Biol Chem 40:1087–1092

    CAS  Google Scholar 

  • Troncoso E, Barahona S, Carrasco M, Villarreal P, Alcaíno J, Cifuentes V, Baeza M (2017) Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic peninsula. Polar Biol 40:649–658

    Article  Google Scholar 

  • Tsuji M, Yokota Y, Shimohara K, Kudoh S, Hoshino T (2013) An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis. PLoS One 8:e59376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    Article  CAS  PubMed  Google Scholar 

  • Turkiewicz M, Pazgier M, Donachie SP, Kalinowska H (2005) Invertase and α-glucosidase production by the endemic Antarctic marine yeast Leucosporidium antarcticum. Polish Polar Res 26:125–136

    Google Scholar 

  • Tutino ML, Parrilli E, De Santi C, Giuliani M, Marino G, de Pascale D (2010) Cold-adapted esterases and lipases: a biodiversity still under-exploited. Curr Chem Biol 4:74–83

    CAS  Google Scholar 

  • van Zyl WH, Bloom M, Viktor MJ (2012) Engineering yeasts for raw starch conversion. Appl Microbiol Biotechnol 95:1377–1388

    Article  CAS  PubMed  Google Scholar 

  • Vaquero ME, Barriuso J, Martínez MJ, Prieto A (2016) Properties, structure, and applications of microbial sterol esterases. Appl Microbiol Biotechnol 100:2047–2061

    Article  CAS  PubMed  Google Scholar 

  • Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 420–440

    Google Scholar 

  • Wanderley KJ, Torres FAG, Moraes LÄMP, Ulhoa CJ (2004) Biochemical characterization of α-amylase from the yeast. FEMS Microbiol Lett 231:165–169

    Article  CAS  PubMed  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 m in the deep sea. Annu Rev Microbiol 49:777–805

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Wang X-T, Liu J-W (2015) Purification and characterization of a novel cold-adapted phytase from strain JMUY14 isolated from Antarctic: characterization of a novel cold-adapted phytase. J Basic Microbiol 55:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Zaliha RN, Salleh AB, Basri M, Mohamad Ali MSB (2012) Cold active enzyme and method thereof. US Patent 2012/0058514 A1

    Google Scholar 

  • Zhu Y, Pan J, Qiu J, Guan X (2008) Isolation and characterization of a chitinase gene from entomopathogenic fungus Verticillium lecanii. Braz J Microbiol 39:314–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmer C, Platz T, Cadez N, Giffhorn F, Kohring GW (2006) A cold active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa. Appl Microbiol Biotechnol 73:132–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grants FONDECYT 1130333, 1160202 and 1140504, and INACH RT_07-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Buzzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baeza, M., Alcaíno, J., Cifuentes, V., Turchetti, B., Buzzini, P. (2017). Cold-Active Enzymes from Cold-Adapted Yeasts. In: Sibirny, A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham. https://doi.org/10.1007/978-3-319-58829-2_10

Download citation

Publish with us

Policies and ethics