Skip to main content

The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss

  • Chapter
  • First Online:
Phosphodiesterases: CNS Functions and Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 17))

Abstract

The purpose of this chapter is to highlight the state of progress for phosphodiesterase-4 (PDE4) modulation as a potential therapeutic for psychiatric illness, and to draw attention to particular hurdles and obstacles that must be overcome in future studies to develop PDE4-mediated therapeutics. Pathological and non-pathological related memory loss will be the focus of the chapter; however, we will at times also touch upon other psychiatric illnesses like anxiety and depression. First, we will provide a brief background of PDE4, and the rationale for its extensive study in cognition. Second, we will explore fundamental differences in individual PDE4 subtypes, and then begin to address differences between pathological and non-pathological aging. Alterations of cAMP/PDE4 signaling that occur within normal vs. pathological aging, and the potential for PDE4 modulation to combat these alterations within each context will be described. Finally, we will finish the chapter with obstacles that have hindered the field, and future studies and alternative viewpoints that need to be addressed. Overall, we hope this chapter will demonstrate the incredible complexity of PDE4 signaling in the brain, and will be useful in forming a strategy to develop future PDE4-mediated therapeutics for psychiatric illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamec R, Hebert M, Blundell J. Long lasting effects of predator stress on pCREB expression in brains regions involved in fearful and anxious behavior. Behav Brain Res. 2011;221:118–33.

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Kato H, Fujiwara T, Itoyama Y. Age-related changes in bindings of second messengers in the rat brain. Brain Res. 1995;704:227–32.

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AFT, Ramos BP, Birnbaum SG, Taylor JR. Protein kinase A as a therapeutic target for memory disorders: rationale and challenges. Trends Mol Med. 2005;11:121–8.

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AFT, Paspalas CD, Gamo NJ, Yang Y, Wang M. Dynamic network connectivity: a new form of neuroplasticity. Trends Cogn Sci. 2010;14:365–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arvanitis DN, Ducatenzeiler A, JN O, Grodstein E, Andrews SD, Tendulkar SR, Ribeiro-da-Silva A, Szyf M, Cuello AC. High intracellular concentrations of amyloid-beta block nuclear translocation of phosphorylated CREB. J Neurochem. 2007;103:216–28.

    CAS  PubMed  Google Scholar 

  • Austin J, Connole E, Kett D, Collins J. Studies in aging of the brain. V. Reduced norepinephrine, dopamine, and cyclic AMP in rat brain with advancing age. Age. 1978;1:121–4.

    Article  CAS  Google Scholar 

  • Azam MA, Tripuraneni NS. Selective phosphodiesterase 4b inhibitors: a review. Sci Pharm. 2014;82:453–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bach ME, Barad M, Son H, Zhuo M, Lu YF, Shih R, Mansuy I, Hawkins RD, Kandel ER. Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci U S A. 1999;96:5280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie GS. Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J. 2009;276:1790–9.

    Article  CAS  PubMed  Google Scholar 

  • Baillie GS, Huston E, Scotland G, Hodgkin M, Gall I, Peden AH, MacKenzie C, Houslay ES, Currie R, Pettitt TR, Walmsley AR, Wakelam MJO, Warwicker J, Houslay MD. TAPAS-1, a novel microdomain within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+−triggered membrane association with selectivity for interaction with phosphatidic acid. J Biol Chem. 2002;277:28298–309.

    Article  CAS  PubMed  Google Scholar 

  • Baillie GS, Sood A, Mcphee I, Gall I, Perry SJ, Lefkowitz RJ, Houslay MD. Beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recrutiment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci. 2003;100:940–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie GS, Adams DR, Bhari N, Houslay TM, Vadrevu S, Meng D, Li X, Dunlop A, Milligan G, Bolger GB, Klussmann E, Houslay MD. Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-immobilized peptide arrays. Biochem J. 2007;404:71–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barad M, Bourtchouladze R, Winder DG, Golan H, Kandel E. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc Natl Acad Sci U S A. 1998;95:15020–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beard M, O’Connell J, Bolger G, Houslay M. The unique N-terminal domain of the cAMP phosphodiesterase PDE4D4 allows for interaction with specific SH3 domains. FEBS Lett. 1999;460:173–7.

    Article  CAS  PubMed  Google Scholar 

  • Beard MB, Huston E, Campbell L, Gall I, McPhee I, Yarwood S, Scotland G, Houslay MD. In addition to the SH3 binding region, multiple regions within the N-terminal noncatalytic portion of the cAMP-specific phosphodiesterase, PDE4A5, contribute to its intracellular targeting. Cell Signal. 2002;14:453–65.

    Article  CAS  PubMed  Google Scholar 

  • Bertolino A, Crippa D, di Dio S, Fichte K, Musmeci G, Porro V, Rapisarda V, Sastre-y-Hernández M, Schratzer M. Rolipram versus imipramine in inpatients with major, “minor” or atypical depressive disorder: a double-blind double-dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol. 1988;3:245–53.

    Article  CAS  PubMed  Google Scholar 

  • Birkenfeld A, Ben-Zvi A. Age associated changes in intracellular cyclic adenosine monophosphate. Clin Exp Immunol. 1984;55:651–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blackman B, Horner K, Heidmann J, Wang D, Richter W, Rich TC, Conti M. PDE4D and PDE4B function in distinct subcellular compartments in mouse embryonic fibroblasts. J Biol Chem. 2011;286:12590–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. Incipient Alzheimer ’ s disease : microarray correlation analyses reveal major transcriptional and tumor suppressor responses. PNAS. 2003;101:2173–8.

    Article  CAS  Google Scholar 

  • Boas J, Ano W, Paul J. Properties of adenylate cyclase from senescent rat brain. Brain Res. 1973;54:391–6.

    Article  Google Scholar 

  • Bolger G, Michaeli T, Martins T, St John T, Steiner B, Rodgers L, Riggs M, Wigler M, Ferguson K. A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol. 1993;13:6558–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger GB, McPhee I, Houslay MD. Alternative splicing of cAMP-specific phosphodiesterase mRNA transcripts, characterization of a a novel tissue-specific isoform. J Biol Chem. 1996;271:1065–71.

    Article  CAS  PubMed  Google Scholar 

  • Bolger GB, Erdogan S, Jones RE, Loughney K, Scotland G, Hoffmann R, Wilkinson I, Farrell C, Houslay MD. Characterization of five different mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem J. 1997;328:539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger GB, McCahill A, Huston E, Cheung Y-F, McSorley T, Baillie GS, Houslay MD. The unique amino-terminal region of the PDE4D5 cAMP phosphodiesterase isoform confers preferential interaction with beta-arrestins. J Biol Chem. 2003a;278:49230–8.

    Article  CAS  PubMed  Google Scholar 

  • Bolger GB, Peden AH, Steele MR, MacKenzie C, McEwan DG, Wallace DA, Huston E, Baillie GS, Houslay MD. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J Biol Chem. 2003b;278:33351–63.

    Article  CAS  PubMed  Google Scholar 

  • Bolger GB, Dunlop AJ, Meng D, Day JP, Klussmann E, Baillie GS, Adams DR, Houslay MD. Dimerization of cAMP phosphodiesterase-4 (PDE4) in living cells requires interfaces located in both the UCR1 and catalytic unit domains. Cell Signal. 2015;27:756–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JL. Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci. 2006;31:680–6.

    Article  CAS  PubMed  Google Scholar 

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva A. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 1994;79:59–68.

    Article  CAS  PubMed  Google Scholar 

  • Brightwell JJ, Smith CA, Neve RL, Colombo PJ. Long-term memory for place learning is facilitated by expression of cAMP response element-binding protein in the dorsal hippocampus. Learn Mem. 2007;14:195–9.

    Article  PubMed  Google Scholar 

  • Brody H. Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol. 1955;102:511–6.

    Article  CAS  PubMed  Google Scholar 

  • Bruno O, Fedele E, Prickaerts J, Parker LA, Canepa E, Brullo C, Cavallero A, Gardella E, Balbi A, Domenicotti C, Bollen E, HJM G, Vanmierlo T, Erb K, Limebeer CL, Argellati F, Marinari UM, Pronzato MA, Ricciarelli R. GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses. Br J Pharmacol. 2011;164:2054–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brullo C, Massa M, Rocca M, Rotolo C, Guariento S, Rivera D, et al. Synthesis, biological evaluation, and molecular modeling of new 3-(cyclopentyloxy)-4-methoxybenzaldehyde -(2-(2,6-dimethylmorpholino)-2-oxoethyl) oxime (GEBR-7b) related phosphodiesterase 4D (PDE4D) inhibitors. J Med Chem. 2014;57(16):7061–72.

    Google Scholar 

  • Burgin AB, Magnusson OT, Singh J, Witte P, Staker BL, Bjornsson JM, Thorsteinsdottir M, Hrafnsdottir S, Hagen T, Kiselyov AS, Stewart LJ, Gurney ME. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol. 2010;28:63–70.

    Article  CAS  PubMed  Google Scholar 

  • Canepa E, Domenicott IC, Marengo B, Passalacqua M, Marinari U, Pronzato M, Fedele E, Ricciarelli R. Cyclic adenosine monophosphate as an endogenous modulator of the amyloid-β precursor protein metabolism. IUBMB Life. 2013;65:127–33.

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28:436–45.

    Article  CAS  PubMed  Google Scholar 

  • Catherine Jin S-L, Bushnik T, Lan L, Conti M. Subcellular localization of rolipram-sensitive, cAMP-specific phosphodiesterases. Differential targeting and activation of the splicing variants derived from The PDE4D gene. J Biol Chem. 1998;273:19672–8.

    Article  Google Scholar 

  • Chandrasekaran A, Toh KY, Low SH, Tay SKH, Brenner S, Goh DLM. Identification and characterization of novel mouse PDE4D isoforms: molecular cloning, subcellular distribution and detection of isoform-specific intracellular localization signals. Cell Signal. 2008;20:139–53.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Huang X, Zhang Y, Rockenstein E, Bu G, Golde TE, Masliah E, Xu H. Alzheimer’s β-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of β-amyloid. J Neurosci. 2012;32:11390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y-F, Wang C, Lin H-B, Li Y-F, Huang Y, J-P X, Zhang H-T. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ25-35 or Aβ1-40 peptide in rats. Psychopharmacology (Berl). 2010;212:181–91.

    Article  CAS  Google Scholar 

  • Cherry JA, Davis RL. Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol. 1999;301:287–301.

    Article  Google Scholar 

  • Cheung Y, Kan Z, Garrett-engele P, Gall I, Murdoch H, Baillie GS, Camargo LM, Johnson JM, Houslay MD, Castle JC. PDE4B5, a novel, super-short, brain-specific cAMP phosphodiesterase-4 variant whose isoform-specifying N-terminal region is identical to that of cAMP. J Pharmacol Exp Ther. 2007;322:600–9.

    Article  CAS  PubMed  Google Scholar 

  • Clark I, Atwood C, Bowen R, Paz-Filho G, Vissel B. Tumor necrosis factor-induced cerebral insulin resistance in Alzheimer’s disease links numerous treatment rationales. Pharmacol Rev. 2012;64:1004–26.

    Article  CAS  PubMed  Google Scholar 

  • Conkright MD, Guzman E, Flechner L, Su AI, Hogenesch JB, Montminy M. Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell. 2003;11:1101–8.

    Article  CAS  PubMed  Google Scholar 

  • Conti M, Richter W, Mehats C, Livera G, Park J-Y, Jin C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem. 2003;278:5493–6.

    Article  CAS  PubMed  Google Scholar 

  • Cowburn R, O’Neill C, Ravid R, Alafuzoff I, Winblad B, Fowler C. Adenylyl cyclase activity in postmortem human brain: evidence of altered G protein mediation in Alzheimer’s disease. J Neurochem. 1992;58:1409–19.

    Article  CAS  PubMed  Google Scholar 

  • Cristòfol R, Porquet D, Corpas R, Coto-Montes A, Serret J, Camins A, Pallàs M, Sanfeliu C. Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J Pineal Res. 2012;52:271–81.

    Article  PubMed  CAS  Google Scholar 

  • Cruz L, Roe DL, Urbanc B, Cabral H, Stanley HE, Rosene DL. Age-related reduction in microcolumnar structure in area 46 of the rhesus monkey correlates with behavioral decline. Proc Natl Acad Sci U S A. 2004;101:15846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Sa C, Tolbert LM, Conti M, Duman RS. Regulation of cAMP-specific phosphodiesterases type 4B and 4D (PDE4) splice variants by cAMP signaling in primary cortical neurons. J Neurochem. 2002;81:745–57.

    Article  PubMed  Google Scholar 

  • D’Sa C, Eisch AJ, Bolger GB, Duman RS. Differential expression and regulation of the cAMP-selective phosphodiesterase type 4A splice variants in rat brain by chronic antidepressant administration. Eur J Neurosci. 2005;22:1463–75.

    Article  PubMed  Google Scholar 

  • Dash P, Hochner B, Kandel E. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature. 1990;345:718–21.

    Article  CAS  PubMed  Google Scholar 

  • Davis RL, Takayasu H, Eberwine M, Myres J. Cloning and characterization of mammalian homologs of the Drosophila dunce+ gene. Proc Natl Acad Sci U S A. 1989;86:3604–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Arcangelis V, Liu R, Soto D, Xiang Y. Differential association of phosphodiesterase 4D isoforms with beta2-adrenoceptor in cardiac myocytes. J Biol Chem. 2009;284:33824–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delaney SM, Geiger JD. Brain regional levels of adenosine and adenosine nucleotides in rats killed by high-energy focused microwave irradiation. J Neurosci Methods. 1996;64:151–6.

    Article  CAS  PubMed  Google Scholar 

  • Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 2001;20:1921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature. 2005;437:574–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drachman DA. Aging of the brain, entropy, and Alzheimer disease. Neurology. 2006;67:1340–52.

    Article  CAS  PubMed  Google Scholar 

  • Driscoll I, Davatzikos C, An Y, Wu X, Shen D, Kraut M, Resnick SM. Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology. 2009;72:1906–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echeverria V, Ducatenzeiler A, Chen CH, Cuello AC. Endogenous beta-amyloid peptide synthesis modulates cAMP response element-regulated gene expression in PC12 cells. Neuroscience. 2005;135:1193–202.

    Article  CAS  PubMed  Google Scholar 

  • Egawa T, Mishima K, Matsumoto Y, Iwasaki K, Fujiwara M. Rolipram and its optical isomers, phosphodiesterase 4 inhibitors, attenuated the scopolamine-induced impairments of learning and memory in rats. Jpn J Pharmacol. 1997;75:275–81.

    Article  CAS  PubMed  Google Scholar 

  • Engels P, Abdel’Al S, Hulley P, Lübbert H. Brain distribution of four rat homologues of the Drosophila dunce cAMP phosphodiesterase. J Neurosci Res. 1995;41:169–78.

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, King DP, Reutiman TJ, Folsom TD, Laurence JA, Lee S, Fan Y-T, Paciga SA, Conti M, Menniti FS. PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia. Schizophr Res. 2008;101:36–49.

    Article  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD, Reutiman TJ, Braun NN, Lavergne LG. Levels of phosphodiesterase 4A and 4B are altered by chronic treatment with psychotropic medications in rat frontal cortex. Synapse. 2010;64:550–5.

    Article  CAS  PubMed  Google Scholar 

  • Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. CREB: a major mediator of neuronal neurotrophin responses. Neuron. 1997;19:1031–47.

    Article  CAS  PubMed  Google Scholar 

  • Fox D, Burgin AB, Gurney ME. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cell Signal. 2014;26:657–63.

    Article  CAS  PubMed  Google Scholar 

  • Frankola KA, Greig NH, Luo W, Tweedie D. Targeting TNF-α to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord Drug Targets. 2011;10:391–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galimberti D, Scarpini E. Inflammation and oxidative damage in Alzheimer’s disease: friend or foe? Front Biosci (Schol Ed). 2011;3:252–66.

    Article  Google Scholar 

  • Geinisman Y. Age-related decline in memory function: is it associated with a loss of synapses? Neurobiol Aging. 1999;20:353–6. discussion 359–360

    Article  CAS  PubMed  Google Scholar 

  • Geinisman Y, Ganeshina O, Yoshida R, Berry RW, Disterhoft JF, Gallagher M. Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiol Aging. 2004;25:407–16.

    Article  CAS  PubMed  Google Scholar 

  • Giambarella U, Murayama Y, Ikezu T, Fujita T, Nishimoto I. Potential CRE suppression by familial Alzheimer’s mutants of APP independent of adenylyl cyclase regulation. FEBS Lett. 1997;412:97–101.

    Article  CAS  PubMed  Google Scholar 

  • Giannaris EL, Rosene DL. A stereological study of the numbers of neurons and glia in the primary visual cortex across the lifespan of male and female rhesus monkeys. J Comp Neurol. 2012;520:3492–508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glisky E. Changes in cognitive function in human aging. In: Riddle DR, editor. Brain aging model methods, mechanism. Boca Raton: CRC Press; 2007.

    Google Scholar 

  • Gloerich M, Bos JL. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 2010;50:355–75.

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest. 2004;114:1624–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiot-Goffioul F, Gerard-Vandenhove MA, Troisfontaines B, Breulet M, von Frenckell R, Bobon D. Preliminary results of a double-blind study between rolipram and desipramine in hospitalized patients with major depressive symptoms. Acta Psychiatr Belg. 1987;87:230–5.

    CAS  PubMed  Google Scholar 

  • Gurney ME, D’Amato EC, Burgin AB. Phosphodiesterase-4 (PDE4) molecular pharmacology and Alzheimer’s disease. Neurotherapeutics. 2015;12:49–56.

    Article  CAS  PubMed  Google Scholar 

  • Hagen TJ, Mo X, Burgin AB, Fox D, Zhang Z, Gurney ME. Discovery of triazines as selective PDE4B versus PDE4D inhibitors. Bioorg Med Chem Lett. 2014;24:4031–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen IIIRT, Zhang H-T. Senescent-induced dysregulation of cAMP/CREB signaling and correlations with cognitive decline. Brain Res. 2013;1516:93–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen IIIRT, Conti M, Zhang H-T. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior. Psychopharmacology (Berl). 2014;231:2941–54.

    Article  CAS  Google Scholar 

  • Hara H, Onodera H, Kato H, Koqure K. Effects of aging on signal transmission and transduction systems in the gerbil brain: morphological and autoradiographic study. Neuroscience. 1992;46:475–88.

    Article  CAS  PubMed  Google Scholar 

  • Hattiangady B, Rao MS, Shetty GA, Shetty AK. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol. 2005;195:353–71.

    Article  CAS  PubMed  Google Scholar 

  • Haug H. Are neurons of the human cerebral cortex really lost during aging? A morphometric examination. Adv Appl Neurol Sci. 1985;2:150–63.

    Article  Google Scholar 

  • He Y, Yang DZ, Yu H, Li MY, Feng QC, Zheng H. Genetic variants of phosphodiesterase 4D gene are associated with an enhanced risk for ischemic stroke in young Chinese population. Neurol India. 2013;61:21–5.

    Article  PubMed  Google Scholar 

  • Heaslip RJ, Evans DY. Emetic, central nervous system, and pulmonary activities of rolipram in the dog. Eur J Pharmacol. 1995;286:281–90.

    Article  CAS  PubMed  Google Scholar 

  • Hebenstreit GF, Fellerer K, Fichte K, Fischer G, Geyer N, Meya U, Sastre-y-Hernández M, Schöny W, Schratzer M, Soukop W. Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry. 1989;22:156–60.

    Article  CAS  PubMed  Google Scholar 

  • Henderson G, Tomlinson B, Gibson P. Cell counts in human cerebral cortex in normal adults throughout life, using an image analysis computer. J Neurol Sci. 1980;46:113–36.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez AI, Martınez M, Hernanz A. Increased cAMP immunostaining in cerebral vessels in Alzheimer ’ s disease. Brain Res. 2001;922:148–52.

    Article  PubMed  Google Scholar 

  • Herrup K. Reimagining Alzheimer’s disease--an age-based hypothesis. J Neurosci. 2010;30:16755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyer EJ, Mergeche JL, Ward JT, Malone HR, Kellner C, Bruce SS, Connolly ES. Phosphodiesterase 4D single-nucleotide polymorphism 83 and cognitive dysfunction in carotid endarterectomy patients. Neurosurgery. 2013;73:791–796; discussion 796.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann R, Baillie GS, MacKenzie SJ, Yarwood SJ, Houslay MD. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at ser579. EMBO J. 1999;18:893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton YM, Sullivan M, Houslay MD. Molecular cloning of a novel splice variant of human type IVA (PDE-IVA) cyclic AMP phosphodiesterase and localization of the gene to the p13.2-q12 region of human chromosome 19 [corrected]. Biochem J. 1995;308(Pt 2):683–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houslay MD. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci. 2010;35:91–100.

    Article  CAS  PubMed  Google Scholar 

  • Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J. 2003;370:1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houslay MD, Baillie GS. The role of ERK2 docking and phosphorylation of PDE4 cAMP phosphodiesterase isoforms in mediating cross-talk between the cAMP and ERK signalling pathways. Biochem Soc Trans. 2003;31:1186–90.

    Article  CAS  PubMed  Google Scholar 

  • Houslay MD, Baillie GS, Maurice DH. cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ Res. 2007;100:950–66.

    Article  CAS  PubMed  Google Scholar 

  • Huston E, Lumb S, Russell A, Catterall C, Ross AH, Steele MR, Bolger GB, Perry MJ, Owens RJ, Houslay MD. Molecular cloning and transient expression in COS7 cells of a novel human PDE4B cAMP-specific phosphodiesterase, HSPDE4B3. Biochem J. 1997;328(Pt 2):549–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huston E, Beard M, McCallum F, Pyne NJ, Vandenabeele P, Scotland G, Houslay MD. The cAMP-specific phosphodiesterase PDE4A5 is cleaved downstream of its SH3 interaction domain by caspase-3. Consequences for altered intracellular distribution. J Biol Chem. 2000;275:28063–74.

    CAS  PubMed  Google Scholar 

  • Ikezu T, Okamoto T, Komatsuzakil K, Matsui T, Martyn JAJ, Nishimoto I. Negative transactivation of cAMP response element by familial Alzheimer ’ s mutants of APP. EMBO J. 1996;15:2468–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imanishi T, Sawa A, Ichimaru Y, Miyashiro M, Kato S, Yamamoto T, Ueki S. Ameliorating effects of rolipram on experimentally induced impairments of learning and memory in rodents. Eur J Pharmacol. 1997;321:273–8.

    Article  CAS  PubMed  Google Scholar 

  • Impey S, Mark M, Villacres E, Poser S, Chavkin C, Storm D. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron. 1996;16:973–82.

    Article  CAS  PubMed  Google Scholar 

  • Jack CR, Petersen RC, YC X, Waring SC, O’Brien PC, Tangalos EG, Smith GE, Ivnik RJ, Kokmen E. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology. 1997;49:786–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang D-J, Park S-W, Lee J-A, Lee C, Chae Y-S, Park H, Kim M-J, Choi S-L, Lee N, Kim H, Kaang B-K. N termini of apPDE4 isoforms are responsible for targeting the isoforms to different cellular membranes. Learn Mem. 2010;17:469–79.

    Article  CAS  PubMed  Google Scholar 

  • Jicha GA, Weaver C, Lane E, Vianna C, Kress Y, Rockwood J, Davies P. cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease. J Neurosci. 1999;19:7486–94.

    CAS  PubMed  Google Scholar 

  • Jin S-LC, Conti M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci U S A. 2002;99:7628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin SL, Richard FJ, Kuo WP, D’Ercole AJ, Conti M. Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc Natl Acad Sci U S A. 1999;96:11998–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin SL, Lan L, Zoudilova M, Conti M. Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages. J Immunol. 2005a;175:1523–31.

    Article  CAS  PubMed  Google Scholar 

  • Jin SL, Latour AM, Conti M. Generation of PDE4 knockout mice by gene targeting. Methods Mol Biol. 2005b;307:191–210.

    CAS  PubMed  Google Scholar 

  • Johannessen M, Delghandi MP, Moens U. What turns CREB on? Cell Signal. 2004;16:1211–27.

    Article  CAS  PubMed  Google Scholar 

  • Johansson E, Sanabra C, Cortes R, Vilaro M, Mengod G. Lipopolysaccharide administration in vivo induces differential expression of cAMP-specific phosphodiesterase 4B mRNA splice variants in the mouse brain. J Neurosci Res. 2011;89:1761–2.

    Article  CAS  PubMed  Google Scholar 

  • Johansson EM, Reyes-Irisarri E, Mengod G. Comparison of cAMP-specific phosphodiesterase mRNAs distribution in mouse and rat brain. Neurosci Lett. 2012;525:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Nicodemus-Johnson J, Danziger RS. An evolutionary analysis of cAMP-specific Phosphodiesterase 4 alternative splicing. BMC Evol Biol. 2010;10:247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston LA, Erdogan S, Cheung YF, Sullivan M, Barber R, Lynch MJ, Baillie GS, Van Heeke G, Adams DR, Huston E, Houslay MD. Expression, intracellular distribution and basis for lack of catalytic activity of the PDE4A7 isoform encoded by the human PDE4A cAMP-specific phosphodiesterase gene. Biochem J. 2004;380:371–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kähler AK, Otnaess MK, Wirgenes KV, Hansen T, Jönsson EG, Agartz I, Hall H, Werge T, Morken G, Mors O, Mellerup E, Dam H, Koefod P, Melle I, Steen VM, Andreassen OA, Djurovic S. Association study of PDE4B gene variants in Scandinavian schizophrenia and bipolar disorder multicenter case-control samples. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:86–96.

    PubMed  Google Scholar 

  • Kaiser LG, Schuff N, Cashdollar N, Weiner MW. Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging. 2005;26:665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karege F, Lambercy C, Schwald M, Steimer T, Cissé M. Differential changes of cAMP-dependent protein kinase activity and 3H-cAMP binding sites in rat hippocampus during maturation and aging. Neurosci Lett. 2001a;315:89–92.

    Article  CAS  PubMed  Google Scholar 

  • Karege F, Schwald M, Lambercy C, Murama JJ, Cisse M, Malafosse A. A non-radioactive assay for the cAMP-dependent protein kinase activity in rat brain homogenates and age-related changes in hippocampus and cortex. Brain Res. 2001b;903:86–93.

    Article  CAS  PubMed  Google Scholar 

  • Kauvar LM. Defective cyclic adenosine 3′:5-monophosphate phosphodiesterase in the Drosophila memory mutant dunce. J Neurosci. 1982;2:1347–58.

    CAS  PubMed  Google Scholar 

  • Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, Reinhart V, Romegialli A, Kleiman RJ. Select 3′,5′-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal. 2013;26:383–97.

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai L-H. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 2007;26:3169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraemer A, Rehmann HR, Cool RH, Theiss C, de Rooij J, Bos JL, Wittinghofer A. Dynamic interaction of cAMP with the Rap guanine-nucleotide exchange factor Epac1. J Mol Biol. 2001;306:1167–77.

    Article  CAS  PubMed  Google Scholar 

  • Kudo K, Wati H, Qiao C, Arita J, Kanba S. Age-related disturbance of memory and CREB phosphorylation in CA1 area of hippocampus of rats. Brain Res. 2005;1054:30–7.

    Article  CAS  PubMed  Google Scholar 

  • Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59:367–74.

    Article  CAS  PubMed  Google Scholar 

  • Lakshminarasimhan H, Chattarji S. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One. 2012;7:e30481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laux G, Becker T, Kühne G, Lesch KP, Riederer P, Beckmann H. Clinical and biochemical effects of the selective phosphodiesterase inhibitor rolipram in depressed inpatients controlled by determination of plasma level. Pharmacopsychiatry. 1988;21:378–9.

    Article  CAS  PubMed  Google Scholar 

  • Laviada ID, Galve-Roperh I, Malpartida JM, Haro A. cAMP signalling mechanisms with aging in the Ceratitis capitata brain. Mech Ageing Dev. 1997;97:45–53.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Baillie GS, Houslay MD. Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5. J Biol Chem. 2009;284:16170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-F, Cheng Y-F, Huang Y, Conti M, Wilson SP, O’Donnell JM, Zhang H-T. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. J Neurosci. 2011;31:172–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lima MN, Presti-Torres J, Garcia VA, Guimarães MR, Scalco FS, Roesler R, Schröder N. Amelioration of recognition memory impairment associated with iron loading or aging by the type 4-specific phosphodiesterase inhibitor rolipram in rats. Neuropharmacology. 2008;55:788–92.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrand A, et al. Different mutations in PDE4D associated with developmental disorders with mirror phenotypes. J Med Genet. 2014;51:45–54.

    Article  CAS  PubMed  Google Scholar 

  • Litersky JM, Johnson GV. Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain. J Biol Chem. 1992;267:1563–8.

    CAS  PubMed  Google Scholar 

  • Liu H, Palmer D, Jimmo SL, Tilley DG, Dunkerley HA, Pang SC, Maurice DH. Expression of phosphodiesterase 4D (PDE4D) is regulated by both the cyclic AMP-dependent protein kinase and mitogen-activated protein kinase signaling pathways. A potential mechanism allowing for the coordinated regulation of PDE4D activity and expression. J Biol Chem. 2000;275:26615–24.

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Wang J, Yu Z, Qin X, Wu Y, Li N, Kui Y, Fang K, Wang X, Wu T, Chen D, Hu Y. Association study between PDE4D gene polymorphism and ischemic stroke. Beijing Da Xue Xue Bao. 2013a;45:359–63.

    CAS  PubMed  Google Scholar 

  • Liu X, Zhu R, Li L, Deng S, Li Q, He Z. Genetic polymorphism in PDE4D gene and risk of ischemic stroke in Chinese population: a meta-analysis. PLoS One. 2013b;8:e66374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, van Heeke G, Houslay MD. RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem. 2005;280:33178–89.

    Article  CAS  PubMed  Google Scholar 

  • Lynch MJ, Baillie GS, Houslay MD. cAMP-specific phosphodiesterase-4D5 (PDE4D5) provides a paradigm for understanding the unique non-redundant roles that PDE4 isoforms play in shaping compartmentalized cAMP cell signalling. Biochem Soc Trans. 2007;35:938–41.

    Article  CAS  PubMed  Google Scholar 

  • Lynex CN, Li Z, Chen ML, Toh KY, Low RWC, Goh DLM, Tay SKH. Identification and molecular characterization of a novel PDE4D11 cAMP-specific phosphodiesterase isoform. Cell Signal. 2008;20:2247–55.

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie SJ, Yarwood SJ, Peden a H, Bolger GB, Vernon RG, Houslay MD. Stimulation of p70S6 kinase via a growth hormone-controlled phosphatidylinositol 3-kinase pathway leads to the activation of a PDE4A cyclic AMP-specific phosphodiesterase in 3T3-F442A preadipocytes. Proc Natl Acad Sci U S A. 1998;95:3549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie KF, Topping EC, Bugaj-Gaweda B, Deng C, Cheung Y-F, Olsen AE, Stockard CR, High Mitchell L, Baillie GS, Grizzle WE, De Vivo M, Houslay MD, Wang D, Bolger GB. Human PDE4A8, a novel brain-expressed PDE4 cAMP-specific phosphodiesterase that has undergone rapid evolutionary change. Biochem J. 2008;411:361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKenzie KF, Wallace DA, Hill EV, Anthony DF, Henderson DJP, Houslay DM, Arthur JSC, Baillie GS, Houslay MD. Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation. Biochem J. 2011;435:755–69.

    Article  CAS  PubMed  Google Scholar 

  • Maillet M, Robert SJ, Cacquevel M, Gastineau M, Vivien D, Bertoglio J, Zugaza JL, Fischmeister R, Lezoualc’h F. Crosstalk between Rap1 and Rac regulates secretion of sAPPalpha. Nat Cell Biol. 2003;5:633–9.

    Article  CAS  PubMed  Google Scholar 

  • Makman M, Ahn H, Thal L, Sharpless N, Dvorkin B, Horowitz S, Rosenfeld M. Evidence for selective loss of brain dopamine- and histamine-stimulated adenylate cyclase activities in rabbits with aging. Brain Res. 1980;192:177–83.

    Article  CAS  PubMed  Google Scholar 

  • Marchmont RJ, Houslay MD. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J. 1980;187:381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin ACL, Cooper DMF. Layers of organization of cAMP microdomains in a simple cell. Biochem Soc Trans. 2006;34:480–3.

    Article  CAS  PubMed  Google Scholar 

  • Martınez M, Fernandez E, Frank A, Guaza C, Hernanz A. Increased cerebrospinal fluid cAMP levels in Alzheimer’s disease. Brain Res. 1999;846:265–7.

    Article  PubMed  Google Scholar 

  • Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13:290–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLachlan C, Chen M, Lynex C, Goh D, Brenner S, Tay S, Pded AD. Changes in PDE4D isoforms in the hippocampus of a patient with advanced Alzheimer disease. Arch Neurol. 2013;64:456–7.

    Article  Google Scholar 

  • McPhee I, Pooley L, Lobban M, Bolger G, Houslay MD. Identification, characterization and regional distribution in brain of RPDE-6 (RNPDE4A5), a novel splice variant of the PDE4A cyclic AMP phosphodiesterase family. Biochem J. 1995;310(Pt 3):965–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPhee I, Cochran S, Houslay MD. The novel long PDE4A10 cyclic AMP phosphodiesterase shows a pattern of expression within brain that is distinct from the long PDE4A5 and short PDE4A1 isoforms. Cell Signal. 2001;13:911–8.

    Article  CAS  PubMed  Google Scholar 

  • Mcphee I, Gibson LC, Kewney J, Darroch C, Stevens PA, Spinks D, Cooreman A, Mackenzie SJ. Cyclic nucleotide signalling: a molecular approach to drug discovery for Alzheimer’s disease. Biochem Soc Trans. 2005;33:1330–2.

    Article  CAS  PubMed  Google Scholar 

  • Mika D, Conti M. PDE4D phosphorylation: a coincidence detector integrating multiple signaling pathways. Cell Signal. 2015;28:719–24.

    Article  PubMed  CAS  Google Scholar 

  • Millar JK, et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science. 2005;310:1187–91.

    Article  CAS  PubMed  Google Scholar 

  • Miller JA, Oldham MC, Geschwind DH. A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J Neurosci. 2008;28:1410–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miró X, Pérez-Torres S, Puigdomènech P, Palacios JM, Mengod G. Differential distribution of PDE4D splice variant mRNAs in rat brain suggests association with specific pathways and presynaptical localization. Synapse. 2002;45:259–69.

    Article  PubMed  CAS  Google Scholar 

  • Mons N, Segu L, Nogues X, Buhot M. Effects of age and spatial learning on adenylyl cyclase mRNA expression in the mouse hippocampus. Neurobiol Aging. 2004;25:1095–106.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery SL, Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol. 2012;7:42–59.

    Article  PubMed  Google Scholar 

  • Moosmang S, Biel M, Hofmann F, Ludwig A. Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol Chem. 1999;380:975–80.

    Article  CAS  PubMed  Google Scholar 

  • Mori F, Pérez-Torres S, De Caro R, Porzionato A, Macchi V, Beleta J, Gavaldà A, Palacios JM, Mengod G. The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J Chem Neuroanat. 2010;40:36–42.

    Article  CAS  PubMed  Google Scholar 

  • Mulchahey JJ, Regmi A, Sheriff S, Balasubramaniam A, Kasckow JW. Coordinate and divergent regulation of corticotropin-releasing factor (CRF) and CRF-binding protein expression in an immortalized amygdalar neuronal cell line. Endocrinology. 1999;140:251–9.

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Cárdenas C, Mei L, Cheung K-H, Foskett JK. Constitutive cAMP response element binding protein (CREB) activation by Alzheimer’s disease presenilin-driven inositol trisphosphate receptor (InsP3R) Ca2+ signaling. Proc Natl Acad Sci U S A. 2011;108:13293–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy EJ. Brain fixation for analysis of brain lipid-mediators of signal transduction and brain eicosanoids requires head-focused microwave irradiation: an historical perspective. Prostaglandins Other Lipid Mediat. 2010;91:63–7.

    Article  CAS  PubMed  Google Scholar 

  • Murray AJ, Shewan DA. Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Mol Cell Neurosci. 2008;38:578–88.

    Article  CAS  PubMed  Google Scholar 

  • Murray AJ, Tucker SJ, Shewan DA. cAMP-dependent axon guidance is distinctly regulated by Epac and protein kinase A. J Neurosci. 2009;29:15434–44.

    Article  CAS  PubMed  Google Scholar 

  • Muschamp JW, Van’t Veer A, Parsegian A, Gallo MS, Chen M, Neve RL, Meloni EG, Carlezon WA. Activation of CREB in the nucleus accumbens shell produces anhedonia and resistance to extinction of fear in rats. J Neurosci. 2011;31:3095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numata S, Ueno S-I, Iga J-I, Song H, Nakataki M, Tayoshi S, Sumitani S, Tomotake M, Itakura M, Sano A, Ohmori T. Positive association of the PDE4B (phosphodiesterase 4B) gene with schizophrenia in the Japanese population. J Psychiatr Res. 2008;43:7–12.

    Article  PubMed  Google Scholar 

  • Numata S, Iga J-I, Nakataki M, Tayoshi S, Taniguchi K, Sumitani S, Tomotake M, Tanahashi T, Itakura M, Kamegaya Y, Tatsumi M, Sano A, Asada T, Kunugi H, Ueno S-I, Ohmori T. Gene expression and association analyses of the phosphodiesterase 4B (PDE4B) gene in major depressive disorder in the Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:527–34.

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JP, Sriram K. Focused microwave irradiation of the brain preserves in vivo protein phosphorylation: comparison with other methods of sacrifice and analysis of multiple phosphoproteins. J Neurosci Methods. 2004;135:159–68.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell JC, McCallum JF, McPhee I, Wakefield J, Houslay ES, Wishart W, Bolger G, Frame M, Houslay MD. The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE4A5). Biochem J. 1996;318(Pt 1):255–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor S, Scarpace P, Abrass I. Age-associated decrease of adenylate cyclase activity in rat myocardium. Mech Ageing Dev. 1981;16:91–5.

    Article  PubMed  Google Scholar 

  • O’Connor S, Scarpace P, Abrass I. Age-associated decrease in the catalytic unit activity of rat myocardial adenylate cyclase. Mech Ageing Dev. 1983;21:357–63.

    Article  PubMed  Google Scholar 

  • O’Donnell JM, Xu Y. Evidence for global reduction in brain cyclic adenosine monophosphate signaling in depression. Biol Psychiatry. 2012;72:524–5.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell JM, Zhang H-T. Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci. 2004;25:158–63.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill C, Wiehager B, Fowler C, Ravid R, Winblad B, Cowburn R. Regionally selective alterations in G protein subunit levels in the Alzheimer’s disease brain. Brain Res. 1994;636:193–201.

    Article  PubMed  Google Scholar 

  • Ohm T, Bohl J, Lemmer B. Reduced cAMP-signal transduction in postmortem hippocampus of demented old people. Prog Clin Biol Res. 1989;317:501–9.

    CAS  PubMed  Google Scholar 

  • Ohm T, Bohl J, Lemmer B. Reduced basal and stimulated (isoprenaline, Gpp(NH)p, forskolin) adenylate cyclase activity in Alzheimer’s disease correlated with histopathological changes. Brain Res. 1991;540:229–36.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RF, Terrin A, Di Benedetto G, Cannon RC, Koh W, Kim M, Zaccolo M, Blackwell KT. The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS One. 2010;5:e11725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouyang M, Zhang L, Zhu JJ, Schwede F, Thomas SA. Epac signaling is required for hippocampus-dependent memory retrieval. Proc Natl Acad Sci U S A. 2008;105:11993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens RJ, Catterall C, Batty D, Jappy J, Russell A, Smith B, Connell JO, Perry MJ. Human phosphodiesterase 4A; characterization of full-length and truncated enzymes expressed in COS cells. Biochem J. 1997;326:53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148:421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearse DD, Hughes ZA. PDE4B as a microglia target to reduce neuroinflammation. Glia. 2016;64:1698–709.

    Article  PubMed  Google Scholar 

  • Pérez-Torres S, Mengod G. cAMP-specific phosphodiesterases expression in Alzheimer’s disease brains. Int Congr Ser. 2003;1251:127–38.

    Article  CAS  Google Scholar 

  • Perez-Torres S, Miro X, Palacios JM, Cortes R, Puigdomenech P, Mengod G. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3 H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat. 2000;20:349–74.

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Morrison JH, Rosene DL, Hyman BT. Are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex. 1998;8:295–300.

    Article  CAS  PubMed  Google Scholar 

  • Podtelezhnikov AA, Tanis KQ, Nebozhyn M, Ray WJ, Stone DJ, Loboda AP. Molecular insights into the pathogenesis of Alzheimer’s disease and its relationship to normal aging. PLoS One. 2011;6:e29610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porte Y, Buhot M-C, Mons N. Alteration of CREB phosphorylation and spatial memory deficits in aged 129T2/Sv mice. Neurobiol Aging. 2008;29:1533–46.

    Article  CAS  PubMed  Google Scholar 

  • Pugazhenthi S, Wang M, Pham S, Sze C, Eckman CB. Downregulation of CREB expression in Alzheimer ’ s brain and in A beta-treated rat hippocampal neurons. Mol Neurodegener. 2011;6:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri S, Volicer L. Effect of aging on cyclic amp levels and adenylate cylcase and phosphodiesterase activities in the rat corpus striatum. Mech Ageing Dev. 1977;2:53–8.

    Article  Google Scholar 

  • Qui Y, Chen C, Malone T, Richter L, Beckendorf S, Davis R. Characterization of the memory gene dunce of Drosophila melanogaster. J Mol Biol. 1991;222:553–65.

    Article  Google Scholar 

  • Ramos BP, Birnbaum SG, Lindenmayer I, Newton SS, Duman RS, Arnsten AFT. Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline. Neuron. 2003;40:835–45.

    Article  CAS  PubMed  Google Scholar 

  • Ramos BP, Stark D, Verduzco L, Van DCH, Arnsten AFT, van Dyck CH. α2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learn Mem. 2006;13:770–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randt CT, Judge ME, Bonnet KA, Quartermain D. Brain cyclic AMP and memory in mice. Pharmacol Biochem Behav. 1982;17:677–80.

    Article  CAS  PubMed  Google Scholar 

  • Raymond DR, Carter RL, Ward CA, Maurice DH. Distinct phosphodiesterase-4D variants integrate into protein kinase A-based signaling complexes in cardiac and vascular myocytes. Am J Physiol Heart Circ Physiol. 2009;296:H263–71.

    Article  CAS  PubMed  Google Scholar 

  • Reeves ML, Leigh BK, England PJ. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J. 1987;241:535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rena G, Begg F, Ross A, MacKenzie C, McPhee I, Campbell L, Huston E, Sullivan M, Houslay MD. Molecular cloning, genomic positioning, promoter identification, and characterization of the novel cyclic amp-specific phosphodiesterase PDE4A10. Mol Pharmacol. 2001;59:996–1011.

    CAS  PubMed  Google Scholar 

  • Richter W, Conti M. Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs). J Biol Chem. 2002;277:40212–21.

    Article  CAS  PubMed  Google Scholar 

  • Richter W, Conti M. The oligomerization state determines regulatory properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases. J Biol Chem. 2004;279:30338–48.

    Article  CAS  PubMed  Google Scholar 

  • Richter W, Jin SL, Conti M. Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue. Biochem J. 2005;388:803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter W, Menniti F, Zhang H, Conti M. PDE4 as a target for cognition enhancement. Expert Opin Ther Targets. 2013;17:1011–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciarelli R, Brullo C, Prickaerts J, Arancio O, Villa C, Rebosio C, et al. Memory-enhancing effects of GEBR-32a, a new PDE4D inhibitor holding promise for the treatment of Alzheimer’s disease. Sci Rep. 2017;7:46320.

    Google Scholar 

  • Robichaud A, Savoie C, Stamatiou PB, Tattersall FD, Chan CC. PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway. Neuropharmacology. 2001;40:262–9.

    Article  CAS  PubMed  Google Scholar 

  • Robichaud A, Savoie C, Stamatiou PB, Lachance N, Jolicoeur P, Rasori R, Chan CC. Assessing the emetic potential of PDE4 inhibitors in rats. Br J Pharmacol. 2002a;135:113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robichaud A, Stamatiou PB, Jin SL, Lachance N, MacDonald D, Laliberté F, Liu S, Huang Z, Conti M, Chan C-C. Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest. 2002b;110:1045–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL, Dj R. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396:474–7.

    Article  PubMed  CAS  Google Scholar 

  • Roscioni SS, Elzinga CR, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedeberg's Arch Pharmacol. 2008;377:345–57.

    Article  CAS  Google Scholar 

  • Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal. 2012;2012:756357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rutten K, Misner DL, Works M, Blokland A, Novak TJ, Santarelli L, Wallace TL. Enhanced long-term potentiation and impaired learning in phosphodiesterase 4D-knockout (PDE4D) mice. Eur J Neurosci. 2008;28:625–32.

    Article  PubMed  Google Scholar 

  • Saldou N, Obernolte R, Huber A, Baecker PA, Wilhelm R, Alvarez R, Li B, Xia L, Callan O, Su C, Jarnagin K, Shelton ER. Comparison of recombinant human PDE4 isoforms: interaction with substrate and inhibitors. Cell Signal. 1998;10:427–40.

    Article  CAS  PubMed  Google Scholar 

  • Satoh J, Tabunoki H, Arima K. Molecular network analysis suggests aberrant CREB-mediated gene regulation in the Alzheimer disease hippocampus. Dis Markers. 2009;27:239–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol. 2003;60:989–94.

    Article  PubMed  Google Scholar 

  • Scheltens P, Barkhof F, Leys D, Wolters EC. Histopathologic correlates of white-matter changes on MRI in Alzheimer ‘s disease and normal aging. Neurology. 1995;45:883–8.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MJ, Thornberry JF. Cyclic AMP and cyclic GMP accumulation in vitro in brain regions of young, old and, aged rats. Brain Res. 1978;139:169–77.

    Article  CAS  PubMed  Google Scholar 

  • Schnecko A, Witte K, Bohl J, Ohm T, Lemmer B. Adenylyl cyclase activity in Alzheimer’s disease brain: stimulatory and inhibitory signal transduction pathways are differently affected. Brain Res. 1994;644:291–6.

    Article  CAS  PubMed  Google Scholar 

  • Scott AI, Perini AF, Shering PA, Whalley LJ. In-patient major depression: is rolipram as effective as amitriptyline? Eur J Clin Pharmacol. 1991;40:127–9.

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani G, Morissette C, Lagacé C, Boulé M, Ouellette M-J, McLaughlin RW, Lacombe D, Gervais F, Tremblay P. The cAMP-specific phosphodiesterase 4B mediates Abeta-induced microglial activation. Neurobiol Aging. 2006;27:691–701.

    Article  CAS  PubMed  Google Scholar 

  • Sette C, Conti M, Chem MJB. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. J Biol Chem. 1996;271:16526–34.

    Article  CAS  PubMed  Google Scholar 

  • Shao M, Yi X, Chi L, Lin J, Zhou Q, Huang R. Ischemic stroke risk in a southeastern Chinese population: insights from 5-lipoxygenase activating protein and phosphodiesterase 4D single-nucleotide polymorphisms. J Formos Med Assoc. 2014;114:422–9.

    Article  PubMed  CAS  Google Scholar 

  • Shefer V. Absolute number of neurons and thickness of cerebral cortex during aging, senile and vascular dementia, and Pick’s and Alzheimer’s diseases. Neurosci Behav Physiol. 1973;6:319–24.

    Article  CAS  PubMed  Google Scholar 

  • Shepherd M, McSorley T, Olsen AE, Johnston LA, Thomson NC, Baillie GS, Houslay MD, Bolger GB. Molecular cloning and subcellular distribution of the novel PDE4B4 cAMP-specific phosphodiesterase isoform. Biochem J. 2003;370:429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheriff S, Dautzenberg FM, Mulchahey JJ, Pisarska M, Hauger RL, Chance WT, Balasubramaniam A, Kasckow JW. Interaction of neuropeptide Y and corticotropin-releasing factor signaling pathways in AR-5 amygdalar cells. Peptides. 2001;22:2083–9.

    Article  CAS  PubMed  Google Scholar 

  • Sierksma AS, van den Hove DL, Pfau F, Philippens M, Bruno O, Fedele E, Ricciarelli R, Steinbusch HW, Vanmierlo T, Prickaerts J. Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D. Neuropharmacology. 2013;77:120–30.

    Article  PubMed  CAS  Google Scholar 

  • Skullerud K. Variations in the size of the human brain. Influence of age, sex, body length, body mass index, alcoholism, Alzheimer changes, and cerebral atherosclerosis. Acta Neurol Scand. 1985;102:1–94.

    CAS  Google Scholar 

  • Smith DL, Pozueta J, Gong B, Arancio O, Shelanski M. Reversal of long-term dendritic spine alterations in Alzheimer disease models. Proc Natl Acad Sci U S A. 2009;106:16877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stancheva S, Alova L. Age-related changes of cyclic AMP phosphodiesterase activity in rat brain regions and a new phosphodiesterase inhibitor--nootropic agent adafenoxate. Gen Pharmacol. 1991;22:955–8.

    Article  CAS  PubMed  Google Scholar 

  • Stavinoha WB. Use of microwaves for rapid fixation of tissues in vivo. Scanning. 1993;15:115–7.

    Article  CAS  PubMed  Google Scholar 

  • Sugawa M, May T. Age-related alteration in signal transduction: involvement of the cAMP cascade. Brain Res. 1993;618:57–62.

    Article  CAS  PubMed  Google Scholar 

  • Sugawa M, May T. Signal transduction in aging. Arch Gerontol Geriatr. 1994;19:235–46.

    Article  PubMed  Google Scholar 

  • Sullivan M, Rena G, Begg F, Gordon L, Olsen AS, Houslay MD. Identification and characterization of the human homologue of the short PDE4A cAMP-specific phosphodiesterase RD1 (PDE4A1) by analysis of the human HSPDE4A gene locus located at chromosome 19p13.2. Biochem J. 1998;333:693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swinnen JV, Joseph DR, Conti M. Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: evidence for a family of genes. Proc Natl Acad Sci U S A. 1989;86:5325–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron. 1998;20:709–26.

    Article  CAS  PubMed  Google Scholar 

  • Taylor JR, Birnbaum S, Ubriani R, Arnsten a F. Activation of cAMP-dependent protein kinase A in prefrontal cortex impairs working memory performance. J Neurosci. 1999;19:RC23.

    CAS  PubMed  Google Scholar 

  • Terry RD, Katzman R. Life span and synapses: will there be a primary senile dementia? Neurobiol Aging. 2001;22:347–8.

    Article  CAS  PubMed  Google Scholar 

  • Terry R, DeTeresa R, Hansen L. Neocortical cell counts in normal human adult aging. Ann Neurol. 1987;21:530–9.

    Article  CAS  PubMed  Google Scholar 

  • Tohda M, Murayama T, Nogiri S, Nomura Y. Influence of aging on rolipram-sensitive phosphodiesterase activity and [3H]rolipram binding in the rat brain. Biol Pharm Bull. 1996;19:300–2.

    Article  CAS  PubMed  Google Scholar 

  • Tomobe K, Okuma Y, Nomura Y. Impairment of CREB phosphorylation in the hippocampal CA1 region of the senescence-accelerated mouse (SAM) P8. Brain Res. 2007;1141:214–7.

    Article  CAS  PubMed  Google Scholar 

  • Tredici G, Miloso M, Nicolini G, Galbiati S, Cavaletti G, Bertelli A. Resveratrol, map kinases and neuronal cells: might wine be a neuroprotectant? Drugs Exp Clin Res. 1999;25:99–103.

    CAS  PubMed  Google Scholar 

  • Vandesquille M, Baudonnat M, Decorte L, Louis C, Lestage P, Béracochéa D. Working memory deficits and related disinhibition of the cAMP/PKA/CREB are alleviated by prefrontal α4β2*-nAChRs stimulation in aged mice. Neurobiol Aging. 2013;34:1599–609.

    Article  CAS  PubMed  Google Scholar 

  • Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, Huang T, Brown KM, Li X, Descalzi G, Kim SS, Chen T, Shang Y, Zhuo M, Houslay MD, Abel T. Sleep deprivation impairs cAMP signaling in the hippocampus. Nature. 2009;461:1122–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verde I, Pahlke G, Salanova M, Zhang G, Wang S, Coletti D, Onuffer J, Jin SL, Conti M. Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem. 2001;276:11189–98.

    Article  CAS  PubMed  Google Scholar 

  • Vincent P, Castro LR, Gervasi N, Guiot E, Brito M, Paupardin-Tritsch D. PDE4 control on cAMP/PKA compartmentation revealed by biosensor imaging in neurons. Horm Metab Res. 2012;44:786–9.

    Article  CAS  PubMed  Google Scholar 

  • Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M. Amyloid beta-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci U S A. 2002;99:13217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wachtel H. Potential antidepressant activity of rolipram and other selective cyclic adenosine 3′,5′-monophosphate phosphodiesterase inhibitors. Neuropharmacology. 1983;22:267–72.

    Article  CAS  PubMed  Google Scholar 

  • Wachtel H, Schneider H. Rolipram, a novel antidepressant drug, reverses the hypothermia and hypokinesia of monoamine-depleted mice by an action beyond postsynaptic monoamine receptors. Neuropharmacology. 1986;25:1119–26.

    Article  CAS  PubMed  Google Scholar 

  • Wallace TL, Stellitano KE, Neve RL, Duman RS. Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety. Biol Psychiatry. 2004;56:151–60.

    Article  CAS  PubMed  Google Scholar 

  • Wallace DA, Johnston LA, Huston E, Macmaster D, Houslay TM, Cheung Y, Campbell L, Millen JE, Smith RA, Gall I, Knowles RG, Sullivan M, Houslay MD. Identification and characterization of PDE4A11, a novel, widely expressed long isoform encoded by the human PDE4A cAMP phosphodiesterase gene. Mol Pharmacol. 2005;67:1920–34.

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Myers JG, Wu P, Cheewatrakoolpong B, Egan RW, Billah MM. Expression, purification, and characterization of human subtypes A, B, C, and D. Biochem Biophys Res Commun. 1997;234:320–4.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Peng M-S, Chen Y, Geng J, Robinson H, Houslay MD, Cai J, Ke H. Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. Biochem J. 2007a;408:193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, Mazer JA, McCormick DA, Arnsten AFT. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell. 2007b;129:397–410.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yang X-M, Zhuo Y-Y, Zhou H, Lin H-B, Cheng Y-F, Xu J-P, Zhang H-T. The phosphodiesterase-4 inhibitor rolipram reverses Aβ-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. Int J Neuropsychopharmacol. 2012;15:749–66.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang Y, Liu Y, Zhao N, Zhang YZ, Yuan L, An L, Li J, Wang X, Qin J, Wilson S, O’Donnell J, Zhang H, Li Y. RNA interference-mediated phosphodiesterase 4D splice variants knock-down in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. Br J Pharmacol. 2013;168:1004–14.

    Article  CAS  Google Scholar 

  • Wang G, Chen L, Pan X, Chen J, Wang L, Wang W, Cheng R, Wu F, Feng X, Yu Y, Zhang HT, O'Donnell JM, Xu Y. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling. Oncotarget. 2016;7:17380–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Rong S, Xie B, Sun Z, Deng Q, Wu H, Bao W, Wang D, Yao P, Huang F, Liu L. Memory impairment in cognitively impaired aged rats associated with decreased hippocampal CREB phosphorylation: reversal by procyanidins extracted from the lotus seedpod. J Gerontol A Biol Sci Med Sci. 2010;65:933–40.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Go ME, Ozawa H, Luckhaus C, Saito T, Rosler M, Riederer P. Hippocampal level of neural specific adenylyl cyclase type I is decreased in Alzheimer’s disease. Biochim Biophys Acta. 2000;1535:60–8.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto-Sasaki M, Ozawa H, Saito T, Rösler M, Riederer P. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res. 1999;824:300–3.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Luo X, Zhang J, Su L, Liang W, Huang G, Wu G, Huang G, Gu L. Association between phosphodiesterase 4D polymorphism SNP83 and ischemic stroke. J Neurol Sci. 2014;338:3–11.

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Wallach J, Del Vecchio M, Wilder E, Zhou H, Quinn W, Tully T. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell. 1994;79:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Zaldua N, Gastineau M, Hoshino M, Lezoualc’h F, Zugaza JL. Epac signaling pathway involves STEF, a guanine nucleotide exchange factor for Rac, to regulate APP processing. Sci Technol. 2007;581:5814–8.

    CAS  Google Scholar 

  • Zeller E, Stief HJ, Pflug B, Sastre-y-Hernández M. Results of a phase II study of the antidepressant effect of rolipram. Pharmacopsychiatry. 1984;17:188–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H-T. Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs. Curr Pharm Des. 2009;15:1688–98.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H-T, Huang Y, Jin SL, Frith SA, Suvarna N, Conti M, O’Donnell JM. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2002;27:587–95.

    CAS  Google Scholar 

  • Zhang X, Odom DT, Koo S-H, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A. 2005;102:4459–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H-T, Huang Y, Masood A, Stolinski LR, Li Y, Zhang L, Dlaboga D, Jin SL, Conti M, O’Donnell JM. Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacology. 2008;33:1611–23.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Cheng Y, Wang H, Wang C, Xu J, Zhang H. RNA interference-mediated knockdown of long-form phosphodiesterase-4D (PDE4D) enzyme reverses amyloid-β42-induced memory deficits in mice. J Alzheimers Dis. 2014;38:269–80.

    PubMed  Google Scholar 

  • Zhao Y, Li W, Li F, Zhang Z, Dai Y, Xu A, Qi C, Gao J. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem Biophys Res Commun. 2013;435:597–602.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman I, Berg A. Levels of adenosine 3′,5′-cyclic monophosphate in the cerebral cortex of aging rats. Mech Ageing Dev. 1974;3:33–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ting Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hansen, R.T., Zhang, HT. (2017). The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss. In: Zhang, HT., Xu, Y., O'Donnell, J. (eds) Phosphodiesterases: CNS Functions and Diseases. Advances in Neurobiology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-58811-7_7

Download citation

Publish with us

Policies and ethics