Skip to main content

The Role of Phosphodiesterase-2 in Psychiatric and Neurodegenerative Disorders

  • Chapter
  • First Online:
Book cover Phosphodiesterases: CNS Functions and Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 17))

Abstract

Cyclic nucleotide PDEs are a super-family of enzymes responsible for regulating intracellular levels of the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Through their catalysis, PDEs are able to exert tight regulation over these important intracellular signaling cascades. Previously, PDEs have been implicated in learning and memory, as well as in mood disorders, such as anxiety and depression. PDE2 is of special interest due to its high level of expression in the forebrain, specifically in the isocortex, entorhinal cortex, striatum, hippocampus, amygdala, and medial habenula. Many of these brain regions are considered participants of the limbic system, which is known as the emotional regulatory center of the brain, and is important for modulating emotion and long-term memory. Therefore, PDE2s coincidental expression in these areas suggests an important role for PDE2 in these behaviors, and researchers are continuing to uncover the complex connections. It was shown that PDE2 inhibitors have pro-cognitive effects in tests of memory, including the object recognition test. PDE2 inhibitors are also protective against cognitive deficits in various models of cognitive impairment. Additionally, PDE2 inhibitors are protective against many different forms of stress-induced anxiety-like and depression-like behaviors. Currently, there is a great need for novel therapeutics for the treatment of mood and cognitive disorders, especially anxiety and depression, and other neurodegenerative diseases, such as Alzheimer’s disease, and PDE2 is emerging as a viable target for future drug development for many of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aan het Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive disorder. CMAJ. 2009;180(3):305–13. doi:10.1503/cmaj.080697.

    Article  Google Scholar 

  • Abarghaz, M., Biondi, S., Duranton, J., Limanton, E., Mondadori, C., & Wagner, P. (2005). Cyclic nucleotide phosphodiesterase inhibitors, preparation and uses thereof.

    Google Scholar 

  • Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol. 2001;11(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  • Alt A, Witkin JM, Bleakman D. AMPA receptor potentiators as novel antidepressants. Curr Pharm Des. 2005;11(12):1511–27.

    Article  CAS  PubMed  Google Scholar 

  • Alt A, Nisenbaum ES, Bleakman D, Witkin JM. A role for AMPA receptors in mood disorders. Biochem Pharmacol. 2006;71(9):1273–88. doi:10.1016/j.bcp.2005.12.022.

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association Task Force On DSM-IV. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Pub.

    Google Scholar 

  • Arranz L, Guayerbas N, la Fuente M. Impairment of several immune functions in anxious women. J Psychosom Res. 2007;62(1):1–8. doi:10.1016/j.jpsychores.2006.07.030.

    Article  PubMed  Google Scholar 

  • Barton MB, Morley DS, Moore S, Allen JD, Kleinman KP, Emmons KM, Fletcher SW. Decreasing women’s anxieties after abnormal mammograms: a controlled trial. J Natl Cancer Inst. 2004;96(7):529–38.

    Article  PubMed  Google Scholar 

  • Beavo JA, Hardman JG, Sutherland EW. Stimulation of adenosine 3′,5′-monophosphate hydrolysis by guanosine 3′,5′-monophosphate. J Biol Chem. 1971;246(12):3841–6.

    Google Scholar 

  • Beer B, Chasin M, Clody DE, Vogel JR. Cyclic adenosine monophosphate phosphodiesterase in brain: effect on anxiety. Science. 1972;176(4033):428–30.

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Todtenkopf M. The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry. 2001;50(6):395–406.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M, Fone KFC, Azmi N, Heidbreder CA, Hagan JJ, Marsden CA. Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. Eur J Neurosci. 2006;24(10):2894–902. doi:10.1111/j.1460-9568.2006.05170.x.

    Article  CAS  PubMed  Google Scholar 

  • Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert PM, Petrov D, Ferstl R, von Eynatten M, Wendt T, Rudofsky G, Joswig M, Morcos M, Schwaninger M, McEwen B, Kirschbaum C, Nawroth PP. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A. 2003;100(4):1920–5. doi:10.1073/pnas.0438019100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A, Koenig G. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology. 2004;47(7):1081–92. doi:10.1016/j.neuropharm.2004.07.040.

    Article  CAS  PubMed  Google Scholar 

  • Bollen E, Puzzo D, Rutten K, Privitera L, De Vry J, Vanmierlo T, Kenis G, Palmeri A, D’Hooge R, Balschun D, Steinbusch HM, Blokland A, Prickaerts J. Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling. Neuropsychopharmacology. 2014;4(February):1–9. doi:10.1038/npp.2014.106.

    Google Scholar 

  • Bonkale WL, Winblad B, Ravid R, Cowburn RF. Reduced nitric oxide responsive soluble guanylyl cyclase activity in the superior temporal cortex of patients with Alzheimer’s disease. Neurosci Lett. 1995;187(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  • Bouayed J, Rammal H, Younos C, Soulimani R. Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur J Pharmacol. 2007;564(1–3):146–9. doi:10.1016/j.ejphar.2007.02.055.

    Article  CAS  PubMed  Google Scholar 

  • Bourtchouladze R, Abel T, Berman N, Gordon R, Lapidus K, Kandel ER. Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn Mem. 1998;5(4–5):365–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buijnsters P, De Angelis M, Langlois X, Rombouts FJR, Sanderson W, Tresadern G, Ritchie A, Trabanco AA, Van Hoof G, Roosbroeck YV, Andrés J-I. Structure-based design of a potent, selective, and brain penetrating PDE2 inhibitor with demonstrated target engagement. ACS Med Chem Lett. 2014;5(9):1049–53. doi:10.1021/ml500262u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgin AB, Magnusson OT, Singh J, Witte P, Staker BL, Bjornsson JM, Thorsteinsdottir M, Hrafnsdottir S, Hagen T, Kiselyov AS, Stewart LJ, Gurney ME. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol. 2010;28(1):63–70. doi:10.1038/nbt.1598.

    Article  CAS  PubMed  Google Scholar 

  • Buxton IL, Brunton LL. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem. 1983;258(17):10233–9.

    CAS  PubMed  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AMG. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 2007;8(10):766–75. doi:10.1038/nrn2214.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cai R. Study and analytical application of inhibitory effect of captopril on multienzyme redox system. Talanta. 2003;61(6):855–61. doi:10.1016/S0039-9140(03)00370-9.

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Denome S, Davis RL. Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc Nat Acad Sci U S A. 1986;83:9313–7. doi:10.1073/pnas.83.24.9313.

    Article  CAS  Google Scholar 

  • Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity, 2(5), 243–256; 2010. doi:10.1042/AN20100019.

    Google Scholar 

  • Conti AC, Blendy JA. Regulation of antidepressant activity by cAMP response element binding proteins cAMP response element binding. Mol Neurobiol. 2004;30(2):143–55.

    Article  CAS  PubMed  Google Scholar 

  • Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy J a. cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci. 2002;22(8):3262–8. http://doi.org/20026293

    CAS  PubMed  Google Scholar 

  • Corbin JD, Turko I, Beasley A, Francis SH. Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem/FEBS. 2000;267(9):2760–7.

    Article  CAS  Google Scholar 

  • Crisp A, Gelder M, Goddard E, Meltzer H. Stigmatization of people with mental illnesses: a follow-up study within the changing minds campaign of the Royal College of Psychiatrists. World Psychiatry. 2005;4(2):106–13.

    PubMed  PubMed Central  Google Scholar 

  • Dash PK, Karl KA, Colicos MA, Prywes R, Kandel ER. cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1991;88(11):5061–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diebold I, Djordjevic T, Petry A, Hatzelmann A, Tenor H, Hess J, Görlach A. Phosphodiesterase 2 mediates redox-sensitive endothelial cell proliferation and angiogenesis by thrombin via Rac1 and NADPH oxidase 2. Circ Res. 2009;104(10):1169–77.

    Article  CAS  PubMed  Google Scholar 

  • Dinerman JL, Steiner JP, Dawson TM, Dawson V, Snyder SH. Cyclic nucleotide dependent phosphorylation of neuronal nitric oxide synthase inhibits catalytic activity. Neuropharmacology. 1994;33(11):1245–51.

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Zhang C, Masood A, Li J, Sun J, Nadeem A, Zhang HT, O’Donnell JM, Xu Y. Protective effects of phosphodiesterase 2 inhibitor on depression- and anxiety-like behaviors: involvement of antioxidant and anti-apoptotic mechanisms. Behav Brain Res. 2014;268:150–8. doi:10.1016/j.bbr.2014.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domek-Łopacińska K, Strosznajder JB. Cyclic GMP metabolism and its role in brain physiology. J Physiol Pharmacol. 2005;56(Suppl 2):15–34.

    PubMed  Google Scholar 

  • Domek-Łopacińska K, Strosznajder JB. The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res. 2008;1216:68–77. doi:10.1016/j.brainres.2008.02.108.

    Article  PubMed  CAS  Google Scholar 

  • Domek-Łopacińska KU, Strosznajder JB. Cyclic GMP and nitric oxide synthase in aging and Alzheimer’s disease. Mol Neurobiol. 2010;41(2–3):129–37. doi:10.1007/s12035-010-8104-x.

    Article  PubMed  CAS  Google Scholar 

  • van Donkelaar EL, Rutten K, Blokland A, Akkerman S, Steinbusch HWM, Prickaerts J. Phosphodiesterase 2 and 5 inhibition attenuates the object memory deficit induced by acute tryptophan depletion. Eur J Pharmacol. 2008;600(1–3):98–104. doi:10.1016/j.ejphar.2008.10.027.

    Article  PubMed  CAS  Google Scholar 

  • van Donkelaar EL, Prickaerts J, Akkerman S, Rutten K, Steinbusch HWM, Blokland A. No effect of acute tryptophan depletion on phosphodiesterase inhibition--related improvements of short-term object memory in male Wistar rats. Acta Psychiatr Scand. 2013;128(2):107–13. doi:10.1111/acps.12166.

    Article  PubMed  CAS  Google Scholar 

  • Douglas LA, Varlinskaya EI, Spear LP. Novel-object place conditioning in adolescent and adult male and female rats: effects of social isolation. Physiol Behav. 2003;80(2–3):317–25.

    Article  CAS  PubMed  Google Scholar 

  • Drobna E, Gazdag Z, Culakova H, Dzugasova V, Gbelska Y, Pesti M, Subik J. Overexpression of the YAP1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine. FEMS Yeast Res. 2012;12(8):958–68. doi:10.1111/j.1567-1364.2012.00845.x.

    Article  CAS  PubMed  Google Scholar 

  • Du H, Guo L, Wu X, Sosunov AA, Mckhann GM, Xi J, Shidu S. Biochimica et Biophysica Acta Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration. BBA-Mol Basis Dis. 2013; doi:10.1016/j.bbadis.2013.03.004.

  • Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997;54(7):597–606.

    Article  CAS  PubMed  Google Scholar 

  • Duszczyk M, Kuszczyk M, Guridi M, Lazarewicz JW, Sadowski MJ. In vivo hippocampal microdialysis reveals impairment of NMDA receptor-cGMP signaling in APP(SW) and APP(SW)/PS1(L166P) Alzheimer’s transgenic mice. Neurochem Int. 2012;61(7):976–80. doi:10.1016/j.neuint.2012.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi Y, Pandey GN. Adenylyl cyclase-cyclicAMP signaling in mood disorders: role of the crucial phosphorylating enzyme protein kinase A. Neuropsychiatr Dis Treat. 2008;4(1):161–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert A, Nisbet R, Grimm A, Götz J. March separate, strike together - role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2013; doi:10.1016/j.bbadis.2013.08.013.

  • Egawa T, Mishima K, Matsumoto Y, Iwasaki K, Iwasaki K, Fujiwara M. Rolipram and its optical isomers, phosphodiesterase 4 inhibitors, attenuated the scopolamine-induced impairments of learning and memory in rats. Jpn J Pharmacol. 1997;75(3):275–81.

    Google Scholar 

  • Ermak G, Davies KJA. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol. 2002;38:713–21.

    Article  CAS  PubMed  Google Scholar 

  • Essayan DM. Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol. 2001;108(5):671–80. doi:10.1067/mai.2001.119555.

    Article  CAS  PubMed  Google Scholar 

  • Feil S, Zimmermann P, Knorn A, Brummer S, Schlossmann J, Hofmann F, Feil R. Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina. Neuroscience. 2005;135(3):863–8. doi:10.1016/j.neuroscience.2005.06.051.

    Article  CAS  PubMed  Google Scholar 

  • Fischmeister R, Castro L, Abi-Gerges A, Rochais F, Vandecasteele G. Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comp Biochem Physiol A Mol Integr Physiol. 2005;142(2):136–43. doi:10.1016/j.cbpb.2005.04.012.

    Article  PubMed  CAS  Google Scholar 

  • Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62(3):525–63. doi:10.1124/pr.110.002907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujishige K, Kotera J, Omori K. Striatum- and testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A. Eur J Biochem/FEBS. 1999;266(3):1118–27.

    Article  CAS  Google Scholar 

  • García-Osta A, Cuadrado-Tejedor M, García-Barroso C, Oyarzábal J, Franco R. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem Neurosci. 2012;3(11):832–44. doi:10.1021/cn3000907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gesellchen F, Zaccolo M. Phosphodiesterase 2A, cGMP stimulated. UCSD Nat Mol. 2011; doi:10.1038/mp.a001750.01.

  • Gomez L, Breitenbucher JG. PDE2 inhibition: potential for the treatment of cognitive disorders. Bioorg Med Chem Lett. 2013;23(24):6522–7. doi:10.1016/j.bmcl.2013.10.014.

    Article  CAS  PubMed  Google Scholar 

  • Guan J, Su SC, Gao J, Joseph N, Xie Z. Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway. PLoS One. 2011;6(9):e25735. doi:10.1371/journal.pone.0025735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gur TL, Conti AC, Holden J, Bechtholt AJ, Hill TE, Lucki I, Malberg JE, Blendy JA. cAMP response element-binding protein deficiency allows for increased neurogenesis and a rapid onset of antidepressant response. J Neurosci. 2007;27(29):7860–8. doi:10.1523/JNEUROSCI.2051-07.2007.

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson AB, Brunton LL. Attenuation of cAMP accumulation in adult rat cardiac fibroblasts by IL-1beta and NO: role of cGMP-stimulated PDE2. Am J Physiol Cell Physiol. 2002;283(2):C463–71. doi:10.1152/ajpcell.00299.2001.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Umemori H, Mishina M, Yamamoto T. The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature. 1999;397(6714):72–6. doi:10.1038/16269.

    Article  CAS  PubMed  Google Scholar 

  • Hebb ALO, Robertson HA. Role of phosphodiesterases in neurological and psychiatric disease. Curr Opin Pharmacol. 2007;7(1):86–92. doi:10.1016/j.coph.2006.08.014.

    Article  CAS  PubMed  Google Scholar 

  • Heine C, Sygnecka K, Scherf N, Berndt A, Egerland U, Hage T, Franke H. Phosphodiesterase 2 inhibitors promote axonal outgrowth in organotypic slice co-cultures. Neurosignals. 2013;21(3–4):197–212. doi:10.1159/000338020.

    Article  CAS  PubMed  Google Scholar 

  • Houslay MD, Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci. 1997;22(6):217–24.

    Article  CAS  PubMed  Google Scholar 

  • Jans LAW, Blokland A. Influence of chronic mild stress on the behavioural effects of acute tryptophan depletion induced by a gelatin-based mixture. Behav Pharmacol. 2008;19(7):706–15. doi:10.1097/FBP.0b013e328315eced.

    Article  CAS  PubMed  Google Scholar 

  • Jans LAW, Lieben CKJ, Blokland A. Influence of sex and estrous cycle on the effects of acute tryptophan depletion induced by a gelatin-based mixture in adult Wistar rats. Neuroscience. 2007;147(2):304–17. doi:10.1016/j.neuroscience.2007.04.028.

    Article  CAS  PubMed  Google Scholar 

  • Jans LAW, Korte-Bouws GAH, Korte SM, Blokland A. The effects of acute tryptophan depletion on affective behaviour and cognition in Brown Norway and Sprague Dawley rats. J Psychopharmacol. 2010;24(4):605–14. doi:10.1177/0269881108099424.

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Ling Q-L, Liu W-T, Lu B, Liu Y, He L, Liu J-G. Down-regulation of dorsal striatal RhoA activity and impairment of working memory in middle-aged rats. Neurobiol Learn Mem. 2013;103C(April):3–10. doi:10.1016/j.nlm.2013.03.005.

    Article  CAS  Google Scholar 

  • Kishida KT, Klann E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal. 2007;9(2):233–44. doi:10.1089/ars.2007.9.ft-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev. 2010;34(8):1307–50.

    Google Scholar 

  • Knight WE, Yan C. Cardiac cyclic nucleotide phosphodiesterases: function, regulation, and therapeutic prospects. Horm Metab Res. 2012;44(10):766–75. doi:10.1055/s-0032-1321870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuloglu M, Atmaca M, Tezcan E, Gecici O, Tunckol H, Ustundag B. Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder. Neuropsychobiology. 2002;46(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  • Laasberg T, Pihlak A, Neuman T, Paves H, Saarma M. Nerve growth factor increases the cyclic GMP level and activates the cyclic GMP phosphodiesterase in PC12 cells. FEBS Lett. 1988;239(2):367–70.

    Article  CAS  PubMed  Google Scholar 

  • Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59(6):367–74. doi:10.1016/j.neuropharm.2010.05.004.

    Article  CAS  PubMed  Google Scholar 

  • Laxman S, Rascón A, Beavo JA. Trypanosome cyclic nucleotide phosphodiesterase 2B binds cAMP through its GAF-A domain. J Biol Chem. 2005;280(5):3771–9. http://doi.org/10.1074/jbc.M408111200

    Article  CAS  PubMed  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76. doi:10.1038/nature05453.

    Article  CAS  PubMed  Google Scholar 

  • Lieben CKJ, van Oorsouw K, Deutz NEP, Blokland A. Acute tryptophan depletion induced by a gelatin-based mixture impairs object memory but not affective behavior and spatial learning in the rat. Behav Brain Res. 2004;151(1–2):53–64. doi:10.1016/j.bbr.2003.08.002.

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Smith PF, Appleton I, Darlington CL, Bilkey DK. Nitric oxide synthase and arginase in the rat hippocampus and the entorhinal, perirhinal, postrhinal, and temporal cortices: Regional variations and age-related changes. Hippocampus. 2003;13(7):859–67. doi:10.1002/hipo.10138.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Liu T-T, Bai W-W, Yi H, Li S-Y, Tian X. Encoding of rat working memory by power of multi-channel local field potentials via sparse non-negative matrix factorization. Neurosci Bull. 2013;29(3):279–86. doi:10.1007/s12264-013-1333-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez OL, Becker JT, Wahed AS, Saxton J, Sweet RA, Wolk DA, Klunk W, Dekosky ST. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80(6):600–7. doi:10.1136/jnnp.2008.158964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lueptow LM, Zhan C-G, O’Donnell JM. Cyclic GMP-mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice. Psychopharmacology. 2016;233(3):447–56. doi:10.1007/s00213-015-4129-1.

    Article  CAS  PubMed  Google Scholar 

  • Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004;84(4):1051–95. doi:10.1152/physrev.00042.2003.

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Bosmans E, Meltzer HY, Scharpé S, Suy E. Interleukin-1 beta: a putative mediator of HPA axis hyperactivity in major depression? Am J Psychiatry. 1993;150(8):1189–93.

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA. Long-term potentiation--a decade of progress? Science. 1999;285(5435):1870–4.

    Article  CAS  PubMed  Google Scholar 

  • Martinez SE. PDE2 Structure and Functions. In: Francis SH, Beavo JA, Houslay MD, editors. Cyclic Nucleotide Phosphodiesterases in Health and Disease (pp. 55–77): CRC Press; 2006. doi:10.1201/9781420020847.ch4.

  • Martins TJ, Mumby MC, Beavo JA. Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem. 1982;257(4):1973–9.

    CAS  PubMed  Google Scholar 

  • Masood A, Nadeem A, Mustafa SJ, O’Donnell JM. Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J Pharmacol Exp Ther. 2008;326(2):369–79. http://doi.org/10.1124/jpet.108.137208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood A, Huang Y, Hajjhussein H, Xiao L, Li H, Wang W, Hamza A, Zhan CG, O’Donnell JM. Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling. J Pharmacol Exp Ther. 2009;331(2):690–9. doi:10.1124/jpet.109.156729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis. 2012;2012:728983. doi:10.1155/2012/728983.

    PubMed  Google Scholar 

  • Menniti FS, Faraci WS, Schmidt CJ. Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov. 2006;5(8):660–70. doi:10.1038/nrd2058.

    Article  CAS  PubMed  Google Scholar 

  • Méry PF, Pavoine C, Pecker F, Fischmeister R. Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes. Mol Pharmacol. 1995;48(1):121–30.

    PubMed  Google Scholar 

  • Mohs RC. A perspective on risks that impede development of drugs to modify the course of Alzheimer’s disease: can they be reduced? Alzheimer’s & Dementia: J Alzheimer’s Assoc. 2008;4(1 Suppl 1):S85–7. doi:10.1016/j.jalz.2007.11.011.

    Article  Google Scholar 

  • Mokni W, Keravis T, Etienne-Selloum N, Walter A, Kane MO, Schini-Kerth VB, Lugnier C. Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One. 2010;5(12):e14227. doi:10.1371/journal.pone.0014227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mseeh F, Colman RF, Colman RW. Inactivation of platelet PDE2 by an affinity label: 8-[(4-bromo-2, 3-dioxobutyl)thio]cAMP. Thromb Res. 2000;98(5):395–401.

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  • Ng YP, Wu Z, Wise H, Tsim KWK, Wong YH, Ip NY. Differential and synergistic effect of nerve growth factor and cAMP on the regulation of early response genes during neuronal differentiation. Neurosignals. 2009;17(2):111–20. doi:10.1159/000197391.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen P, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol. 2003;71:401–37. doi:10.1016/j.pneurobio.2003.12.003.

    Article  CAS  PubMed  Google Scholar 

  • Niewohner U, Schauss D, Hendrix M, Konig G, Boss F-G, van der Staay F-J, Schreiber R, Schlemmer KH, Grosser R (2003) Substituted imidazotriazinones.

    Google Scholar 

  • O’Donnell J, Zhang H. Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci. 2004;25(3):158–63. doi:10.1016/j.tips.2004.01.003.

    Article  PubMed  CAS  Google Scholar 

  • Olivier JDA, Jans LAW, Blokland A, Broers NJ, Homberg JR, Ellenbroek BA, Cools AR. Serotonin transporter deficiency in rats contributes to impaired object memory. Genes Brain Behav. 2009;8(8):829–34. doi:10.1111/j.1601-183X.2009.00530.x.

    Article  CAS  PubMed  Google Scholar 

  • Ota KT, Pierre VJ, Ploski JE, Queen K, Schafe GE. The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase, 792–805; 2008. doi:10.1101/lm.1114808.Holscher.

    Google Scholar 

  • Plummer MS, Cornicelli J, Roark H, Skalitzky DJ, Stankovic CJ, Bove S, Pandit J, Goodman A, Hicks J, Shahripour A, Beidler D, Lu XK, Sanchez B, Whitehead C, Sarver R, Braden T, Gowan R, Shen XQ, Welch K, Ogden A, Sadagopan N, Baum H, Miller H, Banotai C, Spessard C, Lightle S. Discovery of potent selective bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model. Part II: optimization studies and demonstration of in vivo efficacy. Bioorg Med Chem Lett. 2013a;23(11):3443–7. doi:10.1016/j.bmcl.2013.03.082.

    Article  CAS  PubMed  Google Scholar 

  • Plummer MS, Cornicelli J, Roark H, Skalitzky DJ, Stankovic CJ, Bove S, Pandit J, Goodman A, Hicks J, Shahripour A, Beidler D, Lu XK, Sanchez B, Whitehead C, Sarver R, Braden T, Gowan R, Shen XQ, Welch K, Ogden A, Sadagopan N, Baum H, Miller H, Banotai C, Spessard C, Lightle S. Discovery of potent, selective, bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model, part I: transformation of selective pyrazolodiazepinone phosphodiesterase 4 (PDE4) inhibitors into selective PDE2 inhibitors. Bioorg Med Chem Lett. 2013b;23(11):3438–42. doi:10.1016/j.bmcl.2013.03.072.

    Article  CAS  PubMed  Google Scholar 

  • Podzuweit T, Nennstiel P, Müller A. Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell Signal. 1995;7(7):733–8. doi:10.1016/0898-6568(95)00042-N.

    Article  CAS  PubMed  Google Scholar 

  • Puzzo D, Sapienza S. Role of phosphodiesterase 5 in synaptic plasticity and memory ion channels. Ion Channels. 2008;4(2):371–87.

    CAS  Google Scholar 

  • Puzzo D, Vitolo O, Trinchese F, Jacob JP, Palmeri A, Arancio O. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci. 2005;25(29):6887–97. doi:10.1523/JNEUROSCI.5291-04.2005.

    Article  CAS  PubMed  Google Scholar 

  • Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24–31. doi:10.1016/j.it.2005.11.006.

    Article  CAS  PubMed  Google Scholar 

  • RALL TW, SUTHERLAND EW. Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem. 1958;232(2):1065–76.

    CAS  PubMed  Google Scholar 

  • Rascón A, Soderling SH, Schaefer JB, Beavo JA. Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei. Proc Natl Acad Sci U S A. 2002;99(7):4714–9. doi:10.1073/pnas.002031599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Redrobe JP, Jørgensen M, Christoffersen CT, Montezinho LP, Bastlund JF, Carnerup M, Bundgaard C, Lerdrup L, Plath N. In vitro and in vivo characterisation of Lu AF64280, a novel, brain penetrant phosphodiesterase (PDE) 2A inhibitor: potential relevance to cognitive deficits in schizophrenia. Psychopharmacology. 2014; doi:10.1007/s00213-014-3492-7.

  • Reierson GW, Guo S, Mastronardi C, Licinio J, Wong M-L. cGMP signaling, phosphodiesterases and major depressive disorder. Curr Neuropharmacol. 2011;9(4):715–27. doi:10.2174/157015911798376271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reneerkens OAH, Rutten K, Bollen E, Hage T, Blokland A, Steinbusch HWM, Prickaerts J. Inhibition of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by scopolamine or MK-801. Behav Brain Res. 2013;236(1):16–22. doi:10.1016/j.bbr.2012.08.019.

    Article  CAS  PubMed  Google Scholar 

  • Repaske DR, Swinnen JV, Jin SL, Van Wyk JJ, Conti M. A polymerase chain reaction strategy to identify and clone cyclic nucleotide phosphodiesterase cDNAs. Molecular cloning of the cDNA encoding the 63-kDa calmodulin-dependent phosphodiesterase. J Biol Chem. 1992;267(26):18683–8.

    CAS  PubMed  Google Scholar 

  • Reyes-Irisarri E, Markerink-Van Ittersum M, Mengod G, Vente J. Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer’s disease human brains. Eur J Neurosci. 2007;25(11):3332–8. doi:10.1111/j.1460-9568.2007.05589.x.

  • Rodefer JS, Saland SK, Eckrich SJ. Selective phosphodiesterase inhibitors improve performance on the ED/ID cognitive task in rats. Neuropharmacology. 2012;62(3):1182–90. doi:10.1016/j.neuropharm.2011.08.008.

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Dempere-Marco L, Deco G. Holding multiple items in short term memory: a neural mechanism. PLoS One. 2013;8(4):e61078. doi:10.1371/journal.pone.0061078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosman GJ, Martins TJ, Sonnenburg WK, Beavo JA, Ferguson K, Loughney K. Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic nucleotide phosphodiesterase. Gene. 1997;191(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  • Russwurm C, Zoidl G, Koesling D, Russwurm M. Dual acylation of PDE2A splice variant 3: targeting to synaptic membranes. J Biol Chem. 2009;284(38):25782–90. doi:10.1074/jbc.M109.017194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutten K, Prickaerts J, Blokland A. Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action. Neurobiol Learn Mem. 2006;85(2):132–8.

    Google Scholar 

  • Rutten K, Prickaerts J, Hendrix M, Staay FJ, Sik A, Blokland A. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol. 2007a;558(1–3):107–12. doi:10.1016/j.ejphar.2006.11.041.

    Article  CAS  PubMed  Google Scholar 

  • Rutten K, Lieben C, Smits L, Blokland A. The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacology. 2007b;192(2):275–82. doi:10.1007/s00213-006-0697-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutten K, Van Donkelaar EL, Ferrington L, Blokland A, Bollen E, Steinbusch HW, Kelly PA, Prickaerts JH. Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats. Neuropsychopharmacology. 2009;34(8):1914–25. doi:10.1038/npp.2009.24.

    Article  CAS  PubMed  Google Scholar 

  • Rybin VO, Xu X, Lisanti MP, Steinberg SF. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem. 2000;275(52):41447–57. doi:10.1074/jbc.M006951200.

    Article  CAS  PubMed  Google Scholar 

  • Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castrén E. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23(1):349–57.

    CAS  PubMed  Google Scholar 

  • Sadhu K, Hensley K, Florio VA, Wolda SL. Differential expression of the cyclic GMP-stimulated phosphodiesterase PDE2A in human venous and capillary endothelial cells. J Histochem Cytochem. 1999;47(7):895–906.

    Article  CAS  PubMed  Google Scholar 

  • Sanderson TM, Sher E. Neuropharmacology The role of phosphodiesterases in hippocampal synaptic plasticity. Neuropharmacology. 2013; doi:10.1016/j.neuropharm.2013.01.011.

  • Sass P, Field J, Nikawa J, Toda T, Wigler M. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1986;83(24):9303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seybold J, Thomas D, Witzenrath M, Boral S, Hocke AC, Bürger A, Hatzelmann A, Tenor H, Schudt C, Krüll M, Schütte H, Hippenstiel S, Suttorp N. Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood. 2005;105(9):3569–76. doi:10.1182/blood-2004-07-2729.

    Article  CAS  PubMed  Google Scholar 

  • Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–61. doi:10.1146/annurev.biochem.68.1.821.

    Article  CAS  PubMed  Google Scholar 

  • Shelat PB, Chalimoniuk M, Wang J-H, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem. 2008;106(1):45–55. doi:10.1111/j.1471-4159.2008.05347.x.

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Thompson MA, Greenberg ME. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science (New York, NY). 1991;252(5011):1427–30.

    Article  CAS  Google Scholar 

  • Sierksma ASR, Rutten K, Sydlik S, Rostamian S, Steinbusch HWM, Hove DL a, Prickaerts J. Chronic phosphodiesterase type 2 inhibition improves memory in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Neuropharmacology. 2013;64:124–36. doi:10.1016/j.neuropharm.2012.06.048.

    Article  CAS  PubMed  Google Scholar 

  • Snyder PB, Florio VA, Ferguson K, Loughney K. Isolation, expression and analysis of splice variants of a human Ca2+/calmodulin-stimulated phosphodiesterase (PDE1A). Cell Signal. 1999;11(7):535–44.

    Article  CAS  PubMed  Google Scholar 

  • Sonnenburg WK, Mullaney PJ, Beavo JA. Molecular Cloning of a Cyclic GMP-stimulated Cyclic Nucleotide Phosphodiesterase cDNA. J Biol Chem. 1991;1

    Google Scholar 

  • Stephenson DT, Coskran TM, Wilhelms MB, Adamowicz WO, O’Donnell MM, Muravnick KB, Menniti FS, Kleiman RJ, Morton D. Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species. J Histochem Cytochem. 2009;57(10):933–49. doi:10.1369/jhc.2009.953471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson DT, Coskran TM, Kelly MP, Kleiman RJ, Morton D, O’Neill SM, Schmidt CJ, Weinberg RJ, Menniti FS. The distribution of phosphodiesterase 2A in the rat brain. Neuroscience. 2012;226:145–55. doi:10.1016/j.neuroscience.2012.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun P, Enslen H, Myung PS, Maurer RA. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 1994;8(21):2527–39.

    Article  CAS  PubMed  Google Scholar 

  • Suvarna NU, O’Donnell JM. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. J Pharmacol Exp Ther. 2002;302(1):249–56.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Hockman S, Moos M, Taira M, Meacci E, Murashima S, Manganiello VC. Comparison of putative cGMP-binding regions in bovine brain and cardiac cGMP-stimulated phosphodiesterases. Second Messengers Phosphoproteins. 1991;13(2–3):87–98.

    CAS  PubMed  Google Scholar 

  • Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP. PKA: lessons learned after twenty years. Biochim Biophys Acta. 2013;1834(7):1271–8. doi:10.1016/j.bbapap.2013.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegeder I, Schmidtko A, Niederberger E, Ruth P, Geisslinger G. Dual effects of spinally delivered 8-bromo-cyclic guanosine mono-phosphate (8-bromo-cGMP) in formalin-induced nociception in rats. Neurosci Lett. 2002;332(2):146–50.

    Article  CAS  PubMed  Google Scholar 

  • Thorsell A, Slawecki CJ, El Khoury A, Mathe AA, Ehlers CL. The effects of social isolation on neuropeptide Y levels, exploratory and anxiety-related behaviors in rats. Pharmacol Biochem Behav. 2006;83(1):28–34. doi:10.1016/j.pbb.2005.12.005.

    Article  CAS  PubMed  Google Scholar 

  • Titus DJ, Sakurai A, Kang Y, Furones C, Jergova S, Santos R, Sick TJ, Atkins CM. Phosphodiesterase inhibition rescues chronic cognitive deficits induced by traumatic brain injury. J Neurosci. 2013;33(12):5216–26. doi:10.1523/JNEUROSCI.5133-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tramèr MR, Williams JE, Carroll D, Wiffen PJ, Moore RA, McQuay HJ. Comparing analgesic efficacy of non-steroidal anti-inflammatory drugs given by different routes in acute and chronic pain: a qualitative systematic review. Acta Anaesthesiol Scand. 1998;42(1):71–9.

    Article  PubMed  Google Scholar 

  • Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther. 2009;122(3):216–38. doi:10.1016/j.pharmthera.2009.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Staveren WCG, Steinbusch HWM, Markerink-Van Ittersum M, Repaske DR, Goy MF, Kotera J, Omori K, Beavo JA, De Vente J. mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol. 2003;467(4):566–80. doi:10.1002/cne.10955.

  • de Vente J, Markerink-van Ittersum M, Vles JSH. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord. J Chem Neuroanat. 2006;31(4):275–303. doi:10.1016/j.jchemneu.2006.02.006.

    Article  PubMed  CAS  Google Scholar 

  • Vitolo O, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M. Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci U S A. 2002;99(20):13217–21. doi:10.1073/pnas.172504199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Gang Zhang Z, Lan Zhang R, Chopp M. Activation of the PI3-K/Akt pathway mediates cGMP enhanced-neurogenesis in the adult progenitor cells derived from the subventricular zone. J Cereb Blood Flow Metab. 2005;25(9):1150–8. doi:10.1038/sj.jcbfm.9600112.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang R, Xu Y. CHAPTER. 2013;9:1.

    Google Scholar 

  • Weiss IC, Pryce CR, Jongen-Rêlo AL, Nanz-Bahr NI, Feldon J. Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behav Brain Res. 2004;152(2):279–95. doi:10.1016/j.bbr.2003.10.015.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Pan J, Chen L, Zhang C, Sun J, Li J, Nguyen L, Nair N, Zhang H, O’Donnell JM. Phosphodiesterase-2 inhibitor reverses corticosterone-induced neurotoxicity and related behavioural changes via cGMP/PKG dependent pathway. Int J Neuropsychopharmacol. 2013;16(4):835–47. doi:10.1017/S146114571200065X.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Pan J, Sun J, Ding L, Ruan L, Reed M, Yu X, Klabnik J, Lin D, Li J, Chen L, Zhang C, Zhang H, O’Donnell JM. Inhibition of phosphodiesterase 2 reverses impaired cognition and neuronal remodeling caused by chronic stress. Neurobiol Aging. 2015;36(2):955–70. doi:10.1016/j.neurobiolaging.2014.08.028.

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Yamamoto M, Ozawa H, Riederer P, Saito T. Reduced phosphorylation of cyclic AMP-responsive element binding protein in the postmortem orbitofrontal cortex of patients with major depressive disorder. J Neural Transm. 2003;110(6):671–80. doi:10.1007/s00702-002-0810-8.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Paskind M, Bolger G, Thompson WJ, Repaske DR, Cutler LS, Epstein PM. A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem Biophys Res Commun. 1994;205(3):1850–8. doi:10.1006/bbrc.1994.2886.

    Article  CAS  PubMed  Google Scholar 

  • Yang C-R, Wei Y, Qi S-T, Chen L, Zhang Q-H, Ma J-Y, Luo YB, Wang YP, Hou Y, Schatten H, Liu ZH, Sun Q-Y. The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes. PLoS One. 2012;7(6):e38807. doi:10.1371/journal.pone.0038807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller E, Stief HJ, Pflug B, Sastre-y-Hernández M. Results of a phase II study of the antidepressant effect of rolipram. Pharmacopsychiatry. 1984;17(6):188–90. doi:10.1055/s-2007-1017435.

    Article  CAS  PubMed  Google Scholar 

  • Zhang HT, O’Donnell JM. Effects of rolipram on scopolamine-induced impairment of working and reference memory in the radial-arm maze tests in rats. Psychopharmacology (Berl). 2000;150(3):311–6.

    Google Scholar 

  • Zhang H-T, Huang Y, Jin S-L, Frith SA, Suvarna N, Conti M, O’Donnell JM. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacology. 2002;27(4):587–95. doi:10.1016/S0893-133X(02)00344-5.

    CAS  PubMed  Google Scholar 

  • Zhang H-T, Zhao Y, Huang Y, Deng C, Hopper AT, De Vivo M, Rose GM, O’Donnell JM. Antidepressant-like effects of PDE4 inhibitors mediated by the high-affinity rolipram binding state (HARBS) of the phosphodiesterase-4 enzyme (PDE4) in rats. Psychopharmacology. 2006;186(2):209–17. doi:10.1007/s00213-006-0369-4.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Tingare A, Ng DC, Johnson HW, Schell MJ, Lord RL, Chawla S. Biochemical and Biophysical Research Communications IP 3-dependent intracellular Ca 2 + release is required for cAMP-induced c-fos expression in hippocampal neurons. Biochem Biophys Res Commun. 2012;425(2):450–5. doi:10.1016/j.bbrc.2012.07.122.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, C., Lueptow, L.M., Zhang, HT., O’Donnell, J.M., Xu, Y. (2017). The Role of Phosphodiesterase-2 in Psychiatric and Neurodegenerative Disorders. In: Zhang, HT., Xu, Y., O'Donnell, J. (eds) Phosphodiesterases: CNS Functions and Diseases. Advances in Neurobiology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-58811-7_12

Download citation

Publish with us

Policies and ethics