Recommendations of Fertilizer Formulas for the Production of the EVDT 97 Maize Variety in Northern Benin

  • A. M. Igué
  • I. Balogoun
  • A. Saidou
  • A. C. Oga
  • G. Ezui
  • S. Youl
  • G. Kpagbin
  • A. Mando
  • J. M. Sogbedji


An experimental program was carried out in the year 2012 on tree main soil types: ferric Luvisols, gleyic Luvisols and eutric Gleysols in two agroecolological zones of Northern Benin. The global objective was to update the mineral fertilizer formulas recommended for maize production in these zones. The experimental design was a randomized completed bloc with four replicates, installed in farmers’ fields with the specific objective to validate five N, P, K based fertilizer formulas. The maize variety EVDT-97 STRW was used. Biophysical and economic analyses completed using the seasonal stool of the DSSAT model allowed to identify a series of efficient options. The results of variance analyses relating to the effect of different fertilizer formulas on maize grain yields showed that the rate simulated by the DSSAT model (115-30-75) produced the highest grain yields regardless of the soil types and agro-ecological zones. The ratio of observed-to-simulated values are close to 1 and the mean standard prediction error (NRMSE) between the observed and the simulated yields was comprised between 11% and 20% for gleyic Luvisols but between 21% and 30% for the other soil types. The results of the biophysical and economic analysis showed that the N115P30K75 was the most efficient fertilizer formula for sustainable maize production in Northern Benin.


Agro-ecological zone DSSAT Fertilizer recommendation Maize Northern Benin 



The authors are grateful to the International Fertilizer Development Center (IFDC), which has funded these research works from the collection of socio-economic data, mapping the soils of the trial sites to on-farm experiments.


  1. Agossou, V. (1983). Les sols Béninois et leurs Potentialités Agricoles. Projet Agro-Pédologie, Study N 260, 10 p + annexes.Google Scholar
  2. Atacora, K. W., Fosu, M., & Marthey, F. (2014). Modeling maize production towards site specific fertilizer recommendation in Ghana. Global Journal of Science Frontier Research: (D) Agriculture and Veterinary, 14(6), 70–81.Google Scholar
  3. Balogoun, I., Saïdou, A., Ahoton, L. E., Adjanohoun, A., Amadji, G. L., Ezui, G., Youl, S., Mando, A., Igué, A. M., & Sinsin, B. A. (2013). Détermination des formules d’engrais et des périodes de semis pour une meilleure production du maïs (Zea mays L.) au Sud et au Centre Bénin. Agronomic Research Bulletin of Benin (BRAB) Special Edition Maize Fertility – January, 1–11.Google Scholar
  4. CPCS. (1967). Classification des Sols. Travaux CPCS 1963–1967. ENSA, Grignon (87 pp).Google Scholar
  5. Douthwaite, B., Manyong, V. M., Keatinge, J. D. H., & Chiaau, J. (2002). The adoption of alley farming and mucuna: Lessons for research, development and extension. Agroforestry Systems, 56, 193–202.CrossRefGoogle Scholar
  6. Du Toit, A. S., Booysen, J., & Human, H. H. (2001, April 19–22). Use of linear regression and a correlation matrix to evaluate CERES3 (Maize). In: J.W. White, & P.R. Grace (Eds.), Modeling extrems of wheat and maize crop performance in the tropics, proceedings of a workshop. CIMMYT, El Batan (Mexico), Mexico, D.F. CIMMYT.Google Scholar
  7. Dudal, R. (2002). Forty years of soil fertility work in Sub-Saharan Africa. In B. Vanlauwe, J. Diels, N. Sanginga, & R. Merckx (Eds.), Integrated plant nutrient management in Sub-Saharan Africa. From concept to practice (pp. 7–21). London: Edition CAB International.Google Scholar
  8. Dugué, P. (2010). Développement des systèmes de production durables dans les projets vivriers. In: Etude d’évaluation environnementale et du développement de systèmes de production durables dans le cadre des projets de soutien à la production vivrière (Bénin, Togo, Ghana) (p. 135). FARM CIRAD, Ghana.Google Scholar
  9. FAO. (1998). World reference base for soil resources. World soil resources reports n 84. Rome: FAO.Google Scholar
  10. Fikri, K., Ismaili, M., Fikri, B. S., & Tribak, A. (2004). Problèmes de dégradation de l’environnement par la désertification et la déforestation. Impact du phénomène au Maroc. Science et changements planétaires. Sécheresse, 15(4), 307–320.Google Scholar
  11. He, J., Porter, C., Wilkens, P., Marin, F., Hu, H., & Jones, J. W. (2010). Guidelines for installing and running GLUE program. In G. Hoogenboom, J. W. Jones, P. W. Wilkens, C. H. Porter, K. J. Boote, L. A. Hunt, U. Singh, J. L. Lizaso, J. W. White, O. Uryasev, F. S. Royce, R. Ogoshi, A. J. Gijsman, & G. Y. Tsuji (Eds.), Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 [CD-ROM]. Honolulu: University of Hawaii.Google Scholar
  12. IFDC & AFAP. (2016). Agro-ecological zones map of Africa. Regional Workshop of Fertilizer Recommendations. Omono Hotel from 14th to 16th June 2016 at Lomé (Togo).Google Scholar
  13. Igué, A. M. (2009). Impact of land use on chemical and physical soil characteristics in Collines, Benin. Advances in GeoEcology, 40, 72–80.Google Scholar
  14. Igué, A. M. (2012a). Etude Agro-pédologique à l’échelle de 1/50.000 à dans l’arrondissement de Banikoara dans la Commune de Banikoara (Département de l’Alibori). Study Report LSSEE/CRA-Agonkanmey/INRAB. p. 33.Google Scholar
  15. Igué, A. M. (2012b). Etude Agro-pédologique à l’échelle de 1/50.000 à Nanébou dans la Commune de Tanguiéta (Département de l’Atacora). Study Report, LSSEE/CRA-Agonkanmey/INRAB. p. 44.Google Scholar
  16. Igué, A. M., Agossou, V., & Ogouvidé, F. T. (2008). Influence des systèmes d’exploitation agricole sur l’intensité de la dégradation des terres dans le département des Collines au Bénin. Bulletin de la Recherche Agronomique, 61, 39–51.Google Scholar
  17. Igué, A. M., Saidou, A., Adjanohoun, A., Ezui, G., Attiogbe, P., Kpagbin, G., Gotoechan-Hodonou, H., Youl, S., Pare, T., Balogoun, I., Ouedraogo, J., Dossa, E., Mando, A., & Sogbedji, J. M. (2013). Application et adaptation de l’approche intégrée DSSAT-SIG à la formulation des doses d’engrais pour la culture du maïs au Sud et au Centre du Bénin. Bulletin de la Recherche Agronomique du Bénin (BRAB) – Special edition Maize fertility – January 2013. BRAB is on line at
  18. Igué, A. M., Oga, A. C., Saidou, A., Balogoun, I., Anago, F., Ezui, G., Youl, S., Kpagbin, G., Mando, A., & Sogbédji, J. M. (2015). Updating fertilizer formulation for maize cultivation (Zea mays L.) on Ferric Luvisols and Gleysols in the municipality of Tanguiéta, North-West Benin. Global Advanced Research Journal of Agricultural Science, 4(12), 858–863. Special Anniversary Review Issue. ISSN: 2315-5094.Google Scholar
  19. Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crops Resources, 27, 337–350.CrossRefGoogle Scholar
  20. Kanté, S. (2001). Gestion de la fertilité des sols par classes d’exploitation au Mali-sud. Thèse PhD thesis with abstracts in English and Dutch. Wageningen University. p. 236.Google Scholar
  21. Koulibaly, B., Traoré, O., Dakuo, D., Zombré, P. N., & Bondé, D. (2010). Effets de la gestion des résidus de récolte sur les rendements et les bilans culturaux d’une rotation cotonnier-maïs-sorgho au Burkina Faso. Tropicultura, 28(3), 184–189.Google Scholar
  22. Lal, R. (2002). Carbon sequestration in dryland ecosystems of west Asia and North Africa. Land Degradation & Development, 13(1), 45–59.CrossRefGoogle Scholar
  23. Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7, 51–73. (91)90038-3.CrossRefGoogle Scholar
  24. Mrabet, R., & Moussadek. (2012). Conservation agriculture in dry areas of Morocco: Rational for agricultural sustainability under climate and socio-economic change. In International conference of agricultural engineering, Valencia. Spain, [Online] Available
  25. Mrabet, R., Saber, N., El-Brahli, A., Lahlou, S., & Bessam, F. (2001). Total particulate organic matter and structural stability of a calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil and Tillage Research, 57(1), 225–235.CrossRefGoogle Scholar
  26. Robert, M. (1996). Aluminum toxicity a major stress for microbes in the environment (pp. 227–242). Boca Raton: CRC Press.Google Scholar
  27. Saïdou, A., Janssen, B. H., & Temminghoff, E. J. M. (2003). Effects of soils properties, mulch and NPK fertilizer on maize yields and nutrient budgets on ferralitic soil in Southern Benin. Agriculture, Ecosystems and Environment, 100, 265–273.CrossRefGoogle Scholar
  28. Saïdou, A., Kossou, D., Acakpo, C., Richards, P., & Kuyper, W. T. (2012). Effects of farmers’ practices of fertilizer application and land use types on subsequent maize yield and nutrient uptake in Central Benin. International Journal of Biological and Chemical Sciences, 6(1), 363–376.CrossRefGoogle Scholar
  29. Sanchez, P. A., & Jama, B. A. (2002). Soil fertility replenishment takes off in East and southern Africa (p. 352). Nairobi: International Centre for Research in Agro Forestry.Google Scholar
  30. Serpentié G, Ouattara B (2001) Fertilité et jachères en Afrique de l’Ouest. In: Floret Ch, Pontanier R (éds.). La jachère en Afrique tropicale, Editions John Libbey Eurotext, Paris, vol. 2, pp. 21–83.Google Scholar
  31. Singh, U., & Wilkens, P. W. (2001). Simulating water and nutrient stress effects on phenological developments in maize. In J. W. White, & P. R. Grace (Eds.), Modeling extremes of wheat and maize crop performance in the tropics. Proceedings of a workshop, CIMMYT, El Batán, Mexico, 19–22 April 1999.Google Scholar
  32. Tetteh, M. F., & Nurudeen, R. A. (2015). Modeling site-specific fertilizer recommendations for maize production in the Sudan savannah agroecology of Ghana. African Journal of Agricultural Research, 10(11), 1136–1141.Google Scholar
  33. Viennot. (1969). Carte pédologique de reconnaissance du Dahomey au 1/200000. Feuille Tanguiéta. Study N° 110, LSSEE, Cotonou, 41p. + annexes.Google Scholar
  34. Wallach, D., & Goffinet, B. (1987). Mean squared error of prediction in models for studying ecological and agronomic systems. Biometrics, 43, 561–573.CrossRefGoogle Scholar
  35. Wilmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Legates, K. M., Legates, D. R., O’Connell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90(5), 8995–9005.CrossRefGoogle Scholar
  36. Worou, S. K. (1998). Soils dominants du Togo. Corrélation avec la base de référence mondiale. In: Rapport sur les ressources en sol du monde 98. Available online at «http: www. #Top of page». Consulted on 12/10/2010
  37. Yallou, C. G., Aïhou, K., Adjanohoun, A., Baco, M. N., Sanni, O. A.,& Amadou, L. (2010). Répertoire des variétés de maïs vulgarisées au Bénin. Technical document for information and extension. Dépôt légal N° 4920 du 03/12/2010, du 4ème trimestre, Benin National Library (BN). p. 19. ISBN: 978-99919-368-3-3-4.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • A. M. Igué
    • 1
  • I. Balogoun
    • 2
  • A. Saidou
    • 2
  • A. C. Oga
    • 1
  • G. Ezui
    • 3
  • S. Youl
    • 4
  • G. Kpagbin
    • 1
  • A. Mando
    • 5
  • J. M. Sogbedji
    • 6
  1. 1.Laboratory for Soil Science, Water and Environment, Agricultural Research Centre of AgonkanmeyNational Institute for Agronomic Research of BeninCotonouBenin
  2. 2.Integrated Soil and Crop Management Research Unit, Laboratory of Soil Sciences, Department of Crop Sciences, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouBenin
  3. 3.International Plant Nutrition Institute (IPNI), c/o IITA-IbadanIbadanNigeria
  4. 4.IFDC Burkina FasoOuagadougouBurkina Faso
  5. 5.GRAD Consulting GroupOuagadougouBurkina Faso
  6. 6.School of AgronomyUniversity of LoméLoméTogo

Personalised recommendations