Promoting Climate-Smart Agriculture Through Water and Nutrient Interactions Options in Semi-arid West Africa: A Review of Evidence and Empirical Analysis

  • Robert Zougmoré


In this paper, we analysed the ability of a range of existing technologies and practices and explored how their outcomes are linked to climate change adaptation and mitigation in West Africa. The rapid population growth alongside poor land use and management resulted in soil and water erosion, desertification, and salinization, creating a spiralling decline in the productivity of the land for food and other ecosystem services. Climate change brings additional threats arising from stresses and shocks caused by higher temperatures and lack of rainfall. Thus, farmers need to utilize agricultural strategies that sustainably increase productivity, resilience, while reducing GHGs emissions where possible. In order to implement such climate-smart agriculture options in semi-arid West Africa, water has to be available for crop nutrient uptake in the right amounts and at the right time, as water stress during plant growth results in major yield reductions for most crops. Also, farmers need to use more inorganic fertiliser, while striking the right balance between managing soil organic matter, fertility and moisture content and the use of fertilisers. The most successful systems are those that provide water, nutrients and a supportive soil structure in a synergistic manner. Indeed, we found that technologies such as zaï, half-moons, stone bunds combined with application of organic/inorganic sources of nutrients, are promising climate-smart agriculture practices that could be widely used by smallholder farmers to maintain food production and secure farmers’ livelihoods, while possibly protecting the environment. These successful examples can serve as inspiration for future policies and investments that pursue food security goals at all scales.


Climate change Resilience Adapted land use Food security Sahel 


  1. Barro, A., Zougmoré, R., & Taonda, S. J. B. (2005). Mécanisation de la technique du zaï manuel en zone semi-aride. Cahiers Agricultures, 14, 549–559.Google Scholar
  2. Barry, B., Olaleye, A.O., Zougmoré, R., & Fatondji, D. (2008). Rainwater harvesting technologies in the Sahelian zone of West Africa and the potential for outscaling (IWMI Working Paper 126). Colombo, Sri Lanka: IWMI.Google Scholar
  3. Bayala, J., Kalinganire, A., Tchoundjeu, Z., Sinclair, F., & Garrity, D. (2011). Conservation agriculture with trees in the West African Sahel – A review (ICRAF Occasional Paper 14). Nairobi: World Agroforestry Centre.Google Scholar
  4. Beddington, J., Asaduzzaman, M., Fernandez, A., Clark, M., Guillou, M., Jahn, M., Erda, L., Mamo, T., Van Bo, N., Nobre, C. A., Scholes, R., Sharma, R., & Wakhungu, J. (2011). Achieving food security in the face of climate change: Summary for policy makers from the Commission on Sustainable Agriculture and Climate Change. Copenhagen: CRP- CCAFS. Scholar
  5. Breman, H., Groot, J. J. R., & van Keulen, H. (2001). Resource limitations in Sahelian agriculture. Global Environmental Changes, 11, 59–68.CrossRefGoogle Scholar
  6. Buerkert, A., Piepho, H. P., & Bationo, A. (2002). Multi-site time-trend analysis of soil fertility management effects on crop production in sub-Saharan West Africa. Experimental Agriculture, 38, 163–183.CrossRefGoogle Scholar
  7. Carter, M. R., & Barrett, C. B. (2006). The economics of poverty traps and persistent poverty: An asset-based approach. Journal of Development Studies, 42(2), 178–199.CrossRefGoogle Scholar
  8. Chou, C., & Neelin, J. (2004). Mechanisms of global warming impacts on regional tropical precipitation. Journal of Climate, 17(13), 2688–2701.CrossRefGoogle Scholar
  9. Cook, K., & Vizy, E. (2008). Coupled model simulations of the west African monsoon system: Twentieth and twenty first century simulations. Journal of Climate, 19, 3681–3703.CrossRefGoogle Scholar
  10. Cooper P.J.M., Cappiello S., Vermeulen S.J., Campbell B.M., Zougmoré R., & Kinyangi, J. (2013). Large-scale implementation of adaptation and mitigation actions in agriculture (CCAFS Working Paper 50). Copenhagen, Denmark: CRP-CCAFS.
  11. Dai, A., Trenberth, K. E., & Qian, T. T. (2004). A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5, 1117–1130.Google Scholar
  12. Elbehri, A., Kaminski, J., Koroma, S., Iafrate, M., & Benali, M. (2013). West Africa food systems: An overview of trends and indicators of demand, supply, and competitiveness of staple food value chains. In FAO (Ed.), Rebuilding West Africa’s food potential: Policies and private initiatives to promote smallholder-inclusive staple food value chains (pp. 1–42). Rome: FAO Inter-Departmental Working Group.Google Scholar
  13. Ericksen, P., Thornton, P., Notenbaert, A., Cramer, L., Jones, P., & Herrero, M. (2011). Mapping hotspots of climate change and food insecurity in the global tropics. CCAFS report 5. Copenhagen: CRP-CCAFS. Available online at: Scholar
  14. FAO. (2010). “Climate-smart” agriculture: Policies, practices and financing for food security, adaptation and mitigation. Rome: FAO.Google Scholar
  15. FAO. (2012). Towards the future we want, end hunger and make the transition to sustainable agricultural and food systems. Rome: FAO.Google Scholar
  16. FAO. (2013). Climate-Smart Agriculture Sourcebook. Rome: FAO.Google Scholar
  17. Giannini, A. (2010). Mechanisms of climate change in the semiarid African Sahel: The local view. Journal of Climate, 23, 743–756.CrossRefGoogle Scholar
  18. Haarsma, R. J., Selten, F. M., Weber, S. L., & Kliphuis, M. (2005). Sahel rainfall variability and response to greenhouse warming. Geophysical Research Letter, 32, L17702.CrossRefGoogle Scholar
  19. Hassan, A. (1996). Improved traditional planting pits in the Tahoua Dep. (Niger): An example of rapid adoption by farmers. In C. Reij, I. Scoones, & C. Toulmin (Eds.), Sustaining the soil – Indigenous soil and water conservation in Africa. London: Earthscan Publ. Ltd.Google Scholar
  20. Holmgren, P. (2012). Agriculture and climate change – Overview. In A. Meybeck, J. Lankoski, S. Redfern, N. Azzu, & V. Gitz (Eds.), Building resilience for adaptation to climate change in the agriculture sector (pp. 15–18). Rome: FAO-OECD.Google Scholar
  21. Ickowicz A., Ancey V., Corniaux C., Duteurtre G., Poccard-Chappuis R., TourÕ I., Vall E., & Wane A. 2012. Crop–livestock production systems in the Sahel – Increasing resilience for adaptation to climate change and preserving food security. In Proceedings of FAO/OECD workshop on building resilience for adaptation to climate change in the agriculture sector, 23–24 April 2012, Rome, FAO-OCDE (p. 40).Google Scholar
  22. IPCC. (2007). Climate change 2007. The physical basis. In Q. Solomon, M. Manning, Z. Chen, et al. (Eds.), Contribution of Working Group 1 to the 4th assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.Google Scholar
  23. Jalloh, A., Nelson, G. C., Thomas, T. S., Zougmoré, R., & Roy-Macauley, H. (2013). West African agriculture and climate change: A comprehensive analysis. IFPRI Books & research monographs, ISBN 978-0-89629-204-8.
  24. Jarvis, A., Lau, C., Cook, S., Wollenberg, E., Hansen, J., Bonilla, O., & Challinor, A. (2011). An integrated adaptation and mitigation framework for developing agricultural research: Synergies and trade-offs. Experimental Agriculture, 47, 185–203.CrossRefGoogle Scholar
  25. Kaboré, P.D. & Reij, C. (2004). The emergence and spreading of an improved traditional soil and water conservation practice in Burkina Faso (IFPRI Discussion Paper 114). Washington, DC: Environment and Production Technology Division.Google Scholar
  26. Kandji, S. T., Verchot, L., & Mackensen, J. (2006). Climate change and variability in the Sahel region: Impacts and adaptation strategies in the agricultural sector (p. 58). Nairobi: ICRAF & UNEP.Google Scholar
  27. Knight, J. R., Folland, C. K., & Scaife, A. A. (2006). Climate impacts of the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 33. L17706, doi: 10.1029/2006GL026242, 2006.
  28. Landolt, M. (2011, January). Stone lines against desertification. Rural 21 International Platform.Google Scholar
  29. Lobell, D. B., Schlenker, W. S., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620. Scholar
  30. Mando, A., Zougmoré, R., Zombré, N. P., & Hien, V. (2001). Réhabilitation des sols dégradés dans les zones semi-arides de l’Afrique subsaharienne. In C. Floret & R. Pontanier (Eds.), La jachère en Afrique Tropicale; de la jachère naturelle à la jachère améliorée. Le point des connaissances (pp. 311–339). Paris: John LibbeyEurotext.Google Scholar
  31. Neufeldt, H., Jahn, M., Campbell, B. M., Beddington, J. R., DeClerck, F., De Pinto, A., Gulledge, J., Hellin, J., Herrero, M., Jarvis, A., LeZaks, D., Meinke, H., Rosenstock, T., Scholes, M., Scholes, R., Vermeulen, S., Wollenberg, E., & Zougmoré, R. (2013). Beyond climate-smart agriculture: Toward safe operating spaces for global food systems. Agriculture & Food Security, 2, 12.CrossRefGoogle Scholar
  32. Nill, D. (2005). Étude portant sur les aménagements des eaux et des sols (CES) du PATECORE/PLT et leurs impacts – notamment sur les rendements. Sans lieu.Google Scholar
  33. Oldeman L. R., Hakkeling R. T. A., & Sombroek W. G. (1991). World map of the status of humand-induced soil degradation. An explanatory note (2nd rev. ed.). Wageningen, Nairobi: ISRIC, UNEP.Google Scholar
  34. Reij, C., Scoones, I., & Toulmin, C. (1996). Sustaining the soil: Indigenous soil and water conservation in Africa. London: Earthscan.Google Scholar
  35. Reij, C., Tappan, G., & Smale, M. (2009). Agro-environmental Transformations in the Sahel: Another kind of “Green Revolution” (IFPRI Discussion Paper 914).
  36. Rochette, R. M. (1989). Le Sahel en lutte contre la désertification: leçons d’expériences. Margraf: Weikersheim.Google Scholar
  37. Roose, E. (1994). Introduction à la Gestion Conservatoire de l’Eau, de la biomasse et de la fertilité des Sols (GCES), Bulletin pédol (Vol. 70). Rome: FAO.Google Scholar
  38. Rotstayn, L., & Lohmann, U. (2002). Tropical rainfall trends and the indirect aerosol effect. Journal of Climate, 15(15), 2103–2116.CrossRefGoogle Scholar
  39. Sivakumar, M. V. K., & Wallace, J. S. (1991). Soil water balance in the Sudano-Sahelian zone: Need, relevance and objectives of the workshop. In M. V. K. Sivakumar, J. S. Wallace, C. Renard, & C. Giroux (Eds.), Soil water balance in the Sudano-Sahelian Zone (pp. 3–10). Wallingford: IAHS Press Institute of Hydrology.Google Scholar
  40. Thornton, P. K., Jones, P. G., Owiyo, T., Kruska, R. L., Herrero, M., Kristjanson, P., Notenbaert, A., Bekele, N., & Omolo, A. (2006). Mapping climate vulnerability and poverty in Africa. Report-Department for International Development. Nairobi: The International Livestock Research Institute.Google Scholar
  41. Ting, M., Kushnir, Y., Seager, R., & Li, C. (2009). Forced and internal twentieth-century SST in the North Atlantic. Journal of Climate, 22, 1469–1481. doi:10.1175/2008JCLI2561.1.Google Scholar
  42. Washington, R., & Hawcroft, M. (2012). Climate change in west African agriculture: Recent trends, current projections, crop-climate suitability, and prospects for improved climate model information. Copenhagen: CCAFS. Scholar
  43. Winterbottom, R., Reij, C., Garrity, D., Glover, J., Hellums, D., Mcgahuey, M., & Scherr, S. (2013). “Improving land and water management.” working paper, installment 4 of creating a sustainable food future. Washington, DC: World Resources Institute. Accessible at:
  44. Zougmoré, R., Guillobez, S., Kambou, N. F., & Son, G. (2000). Runoff and sorghum performance as affected by the spacing of stone lines in the semiarid Sahelian zone. Soil & Tillage Research, 56, 175–183.CrossRefGoogle Scholar
  45. Zougmoré, R., Mando, A., Ringersma, J., & and Stroosnijder L. (2003a). Effect of combined water and nutrient management on runoff and sorghum performance in semiarid Burkina Faso. Soil Use & Management, 19, 257–264.CrossRefGoogle Scholar
  46. Zougmoré, R., Kambou, N. F., & Zida, Z. (2003b). Role of nutrient amendments in the success of half-moon soil and water conservation practice in semiarid Burkina Faso. Soil and Tillage Research, 71, 143–149.CrossRefGoogle Scholar
  47. Zougmoré, R., Mando, A., Stroosnijder, L., & Ouédraogo, E. (2004a). Economic benefits of combining soil and water conservation measures with nutrient management in semiarid Burkina Faso. Nutrient Cycling in Agroecosystems, 70, 261–269.CrossRefGoogle Scholar
  48. Zougmoré, R., Ouattara, K., Mando, A., & Ouattara, B. (2004b). Rôle des nutriments dans le succès des techniques de conservation des eaux et des sols (cordons pierreux, bandes enherbées, zaï et demi-lunes) au Burkina Faso. Sécheresse, 15, 41–48.Google Scholar
  49. Zougmoré, R., Mando, A., & Stroosnijder, L. (2009). Soil nutrient and sediment loss as affected by erosion barriers and nutrient source in semi-arid Burkina Faso. Arid Land Research & Management, 23, 85–101.CrossRefGoogle Scholar
  50. Zougmoré, R., Mando, A., & Stroosnijder, L. (2010). Benefits of integrated soil fertility and water management in semi-arid West Africa: An example study in Burkina Faso. Nutrient Cycling in Agroecosystems, 88(1), 17–27.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)ICRISAT BamakoBamakoMali

Personalised recommendations