Advertisement

Maize Response to Fertilizer on Ferralsol and Luvisol in the South Sudan Zone of Burkina Faso

  • Idriss Serme
  • Korodjouma Ouattara
  • Isabelle Orokya Traore
  • Souleymane Ouedraogo
  • Sansan Youl
  • Badiori Ouattara
  • Francois Lompo
  • P. Michel Sedogo
  • Charles Wortmann
Chapter

Abstract

A field study was conducted at Farako-Bâ, located in the south Sudan zone of Burkina Faso to update the fertilizer recommendations for maize production according to the soil type and variety of maize. The experiment was a split-plot arranged in a randomized complete block design with three replications on both Luvisol and Ferralsol. The factors were mineral fertilizer options in the sub-plot and maize variety in the main plot. The treatment options were; control, 90 kg N ha−1, 90 kg N ha−1+ 15 kg P ha−1, 90 kg N ha−1+ 7.5 kg P ha−1, 90 kg N ha−1 + 22.5 kg P ha−1, 90 kg N ha−1+ 15 kg P ha−1 + 10 kg K ha−1, 90 kg N ha−1 + 15 kg P ha−1 + 20 kg K ha−1, 90 kg N ha−1 + 15 kg P ha−1 + 30 kg K ha−1 and diagnostic (90 kg N ha−1 + 15 kg P ha−1+ 20 kg K ha−1+ 15 kg S ha−1+ 2.5 kg Zn ha−1+ 10 kg Mg ha−1+ 0.5 kg B ha−1). The maize varieties were Komsaya and SR21. At harvest grain and, stover yield as well as the harvest index were computed. The results showed that, grain and stover yields were significantly affected by both mineral fertilizer and soil type. Between the two maize varieties, Komsaya gave the highest grain yield across fertilizer treatments. Cultivation of Komsaya was the most profitable in terms of returns on investment on both soil types than SR21 which was economically viable when grown on a Luvisol.

Keywords

Benchmark soils Maize Mineral fertilizer South Sudan zone 

References

  1. Aflakpui, G. K. S., Anchirinah, V. M., & Asumadu, H. (2005). Response of a quality protein maize hybrid to N supply and plant density in the forest zone of Ghana. Tropical Science, 45, 3–7.CrossRefGoogle Scholar
  2. Aune, J. B., & Ousman, A. (2011). Effect of seed priming and micro-dosing of fertilizer on sorghum and pearl millet in Western Sudan. Experimental Agriculture, 2011(47), 419–430.CrossRefGoogle Scholar
  3. Aune, J. B., Doumbia, M., & Berthe, A. (2007). Micro fertilizing sorghum and pearl millet in Mali. Agronomic, economic and social feasibility. Outlook Agric, 36, 199–203.CrossRefGoogle Scholar
  4. Belfield S., & Brown, C. (2008). Field crop manual.Google Scholar
  5. Conley, S. P., Steven, W. G., & Dunn, D. D. (2005). Grain sorghum response to row spacing, plant density and planter skips. doi:10-1094/CM-2005-0718-01-RS.
  6. Damsteegt, V. D., & Igwegbe, E. C. K. (2005). Epidemiology and control of maize streak. In A. Hadidi, R. K. Khetarpal, & H. Koganezawa (Eds.), Plant virus disease control. St. Paul: APS Press.Google Scholar
  7. Dembélé, N. N., Savadogo, K. (1996). The need to link soil fertility management to input/output market development in West Africa: Key issues. In The key to sustainable agriculture in West Africa, Seminar, Lomé, Nov 19–22 1996.Google Scholar
  8. DGPER. (2010). Renforcement de la disponibilité et de l’accès aux statistiques rizicoles. Une contribution à l’initiative d’urgence pour le Riz en Afrique subsaharienne. Rapport pays, Ouagadougou.Google Scholar
  9. FAO Statistical Databases. (2008). Agriculture data. Available online. http://faostat.fao.org.
  10. Fontes, J., & Guinko, S. (1995). Carte de végétation et de l‘occupation du sol du Burkina Faso (67p.). Notice explicative.Google Scholar
  11. Gao, Q., Li, D. Z., Wang, J. J., Bai, B. Y., & Huang, L. H. (2007). Effects of single fertilization for spring maize. Journal of Maize Sciences, 15, 125–128.Google Scholar
  12. Gerner, H., & Harris, G. (1993). The use and supply of fertilizers in Sub-Saharan Africa. In H. van Reuter & H. W. Prins (Eds.), The role of plant nutrient for sustainable food crop production in Sub-Saharan Africa. Leidschendam: The Dutch Association of Fertiliser Producers.Google Scholar
  13. Guo, Z., Koo, J., & Wood, S. (2009). Fertilizer profitability in East Africa: A spatially explicit policy analysis (17 p). Washington, DC: International Food Policy Research Institute (IFPRI).Google Scholar
  14. Hay, R. K. M. (1995). Harvest index: A review of its use in plant breeding and crop physiology. The Annals of Applied Biology, 126, 197–216.CrossRefGoogle Scholar
  15. International Institute of Tropical Agriculture (IITA). (2007). Maize program annual report for 2007. Ibadan, Nigeria (pp. 1–2).Google Scholar
  16. Li, S. L., Zhang, Y. B., Rui, Y. K., & Chen, X. F. (2012). Nutrient contents in maize kernels grown on different types of soil. International Journal of Experimental Botany, 81, 41–43. ISSN 0031 9457.Google Scholar
  17. Lorenz, A. J., Gustafson, T. J., Coors, J. G., & De Leon, N. (2010). Breeding maize for a bioeconomy: A literature survey examining harvest index and stover yield and their relationship to grain yield. Crop Science, 50, 1–12.CrossRefGoogle Scholar
  18. Macharia, C. N., Nero, C. M., Omaha, G. A., & Shelli, M. S. (2010). Comparative performance of advanced generations of maize hybrids with local maize variety. Agronomic and financial implications for smallholder farmers. Journal of Animal & Plant Science, 7(2), 801–809.Google Scholar
  19. Malagi, S. C. (2005). Response of cowpea genotypes to plant density and fertilizer levels under rainfed vertisols. Thesis submitted to the Department of Agronomy, College of Agriculture, Dharwad. University of Agricultural Sciences, for the degree of Master of Science (Agriculture) in Agronomy (p. 53).Google Scholar
  20. Mphande, M. C. (1994). The effect of nitrogen levels of different maize varieties. BSc Degree Project report, Bunda College, Lilongwe, Malawi.Google Scholar
  21. Ndlangamandla, G. M. (1998). The performance of maize (Zea mays L.) cultivars under different fertilizer rates and soil types in two agro-ecological zones in Swaziland. MSc. Thesis.Google Scholar
  22. Odendo, M., De Groote, H., & Odongo, O. M. (2001). Assessment of farmers’ preferences and constraints to maize production in moist mid-altitude zone of Western Kenya Paper presented at the 5th international conference of the African crop science society, Lagos, Nigeria Oct 21–26, 2001. Ed. Malika, H.Google Scholar
  23. Ojiem, J. O., Ransom, J. K., & Wakhonya, H. W. (1996). Performance of hybrid and local maize with and without fertilizer.Google Scholar
  24. Opoku, A. (2011). Sustainability of crop residues and manure management in smallholder cereal-legume-livestock systems in the Savannas of West Africa. PhD Thesis, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (237 p).Google Scholar
  25. Riaz, B., Ali, S., & Jan, D. (2014). Acreage response analysis of maize growers. International Journal of Food and Agricultural Economics. Pakistan, 2(3), 33–44. ISSN 2147–8988.Google Scholar
  26. Roy, R. N., Finck, A., Blair, G. J., & Tandon, H. L. S. (2006). Plant nutrition for food security. A guide for integrated nutrient management (270 pp). FAO fertilizer and plant nutrition bulletin 16, Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  27. Sanginga, N., & Woomer, P. L. (Eds.). (2009). Integrated soil fertility management in Africa: Principles, practices and development process. Tropical Soil Biology and Fertility Institute of the International center for Tropical Agriculture. Nairobi 263 pp.Google Scholar
  28. Shao, F. M. (1996). Maize productivity gains through research and technology dissemination. Proceedings of the fifth Eastern and Southern Africa Regional Maize Conference, held in Arusha, 3rd–7th June 1996, Tanzania.Google Scholar
  29. Sharma, H., Nahatkar, S., & Patel, M. M. (1996). Constraints of soybean production in Madhya Pradesh-an-analysis. Bhartiya Krishi Anusandhan Patrika, 11, 79–84.Google Scholar
  30. Sime, G., & Aune, J. B. (2014). Maize response to fertilizer dosing at three sites in the central rift valley of Ethiopia. Agronomy, 2014(4), 436–451.CrossRefGoogle Scholar
  31. Singh, B. B., Ajeigbe, H. A., Tarawali, S. A., Fernandez-Rivera, S., & Abubakar, M. (2003). Improving the production and utilization of cowpea as food and fodder. Field Crops Research, 84, 169–177.CrossRefGoogle Scholar
  32. USAID/EAT. (2012). The market for maize, rice, soy, and warehousing in northern Ghana. Fintrac Inc. www.eatproject.org.
  33. Van Waverson, E. J., Nhlengetfwa, J. V., & Mashwama, J. S. (1993). Land suitability for rainfed crop production for bean, cotton, cowpea, groundnut, maize, sorghum, sunflower and tobacco (pp. 40–53). Field document. 5. Ministry of Agriculture and cooperation, Mbabane, Swaziland.Google Scholar
  34. Wasonga, C. J., Sigunga, D. O., & Musandu, A. O. (2008). Phosphorus requirements by maize varieties in different soil types of western Kenya. African Crop Science Journal, 16(2), 161–173. ISSN 1020-9730/2008.Google Scholar
  35. WRBSR (World reference base for soil resources) (2014). 2nd edition. World Soil Resources Reports No. 103. FAO, Rome. IUSS Working Group WRB 2006. ISBN 92-5-105511-4.Google Scholar
  36. Yamoah, C. F., Bationo, A., Shapiro, B., & Koala, S. (2002). Trend and stability analysis of millet yield treated with fertilizer and crop residues in the Sahel. Field Crops Research, 75, 53–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Idriss Serme
    • 1
  • Korodjouma Ouattara
    • 1
  • Isabelle Orokya Traore
    • 1
  • Souleymane Ouedraogo
    • 1
  • Sansan Youl
    • 2
  • Badiori Ouattara
    • 1
  • Francois Lompo
    • 1
  • P. Michel Sedogo
    • 1
  • Charles Wortmann
    • 3
  1. 1.Institut de l’Environnement et de Recherches Agricoles (INERA)Ouagadougou 04Burkina Faso
  2. 2.International Fertilizer Development Center (IFDC)OuagadougouBurkina Faso
  3. 3.University of Nebraska-LincolnLincolnUSA

Personalised recommendations