Managing Fertilizer Recommendations in Rice-Based Cropping Systems Challenges and Strategic Approaches

  • Vincent Boubie Bado
  • Koffi Djaman
  • Mel Cesse Valère


Improving agricultural productivity to facing the fast growing food demands is the huge challenge of Sub-Saharan Africa (SSA). Fertilizer is a powerful productivity-enhancing input, but farmers of SSA use only 5 to 9 kg ha−1 of fertilizer, ten time less than Latin America and Asia (50 and 80 kg ha−1, respectively). Rice (Oryza sativa) is one of the most important food crops of SSA and rice consumption is growing faster than the consumption of any other commodity in Africa. Rice-based systems have high potential for improving food production through an efficient management of fertilizers. The biophysical environment, cropping systems and, socio-economic environment of farmers including market opportunities are the main factors for development of appropriate fertilizer recommendations. This paper makes a critical review of rice-based systems in Africa and the main achievements on fertilizer recommendation, and further identifies the main challenges and opportunities to improve fertilizer use efficiency in rice-based systems. The opportunities offered by the new concepts, modeling and decision support tools that have been recently developed for better management of fertilizers in rice systems have been discussed. Beyond the traditional techniques of blanket fertilizer recommendations by country, some suggestions are proposed to improve the utilization of the new concepts and decisions support tools for better management of fertilizer in the rice-based systems.


Nutrient management Rice cropping system Fertilizer recommendation Management tools 


  1. Abd El-Hadi, A. H., Negm, A. Y., & Marchand, M. (2013). Impact of potassium on nitrogen utilization by the rice crop under saline condition (Research Findings: eifc No. 35),
  2. Aboa, K., Didjeira, A., & Kpemoua, K. (2008). Produire du riz, bien le transformer pour mieux le vendre. Institut Togolais de Recherche Agronomique-Collection brochures et fiches techniques (p. 17).Google Scholar
  3. Akanvou, R., Becker, M., Chano, M., Johnson, D. E., Gbaka-Tcheche, H., & Toure, A. (2000). Fallow residue management effects on upland rice in three agroecological zones of West Africa. Biology and Fertility of Soils, 31, 501–507.CrossRefGoogle Scholar
  4. Asubonteng, O. K. (2001). Characterization and evaluation of inland valley water- sheds for sustainable agricultural production: Case study of semi-deciduous forest zone in the Ashanti Region of Ghana. Tropics, 10, 539–553.CrossRefGoogle Scholar
  5. Bado, B. V., Sedego, M. P., Cescas, M. P., Lompo, F., & Bationo, A. (1997). Effets à long terme des fumures sur le sol et les rendements du maïs au Burkina Faso. Cahiers Agricultures, 6, 547–626.Google Scholar
  6. Bado, B. V., DeVries, M. E., Haefele, S. M., Wopereis, M. C. S., & Ndiaye, M. K. (2008). Critical limit of extractable phosphorus in a Gleysol for rice production in the Senegal River valley of West Africa. Communications in Soil Science and Plant Analysis, 39, 202–206.CrossRefGoogle Scholar
  7. Bado, B. V., Aw, A., & Ndiaye, M. K. (2010). Long-term effect of continuous cropping of irrigated rice on soil and yield trends in the Sahel of West Africa. Nutrient Cycling in Agroecosystems, 88, 133–141.CrossRefGoogle Scholar
  8. Bado, B. V., Sawadogo, A., Thio, B., Bationo, A., Traoré, K., & Cescas, M. (2011). Nematode infestation and N-effect of legumes on soil and crop yields in legume-sorghum rotations. Agricultural Sciences, 02, 49–55.CrossRefGoogle Scholar
  9. Balasubramanian, V., Sie, M., Hijmans, R. J., & Otsuka, K. (2007). Increasing rice production in Sub Saharan Africa: Challenges and opportunities. Advances in Agronomy, 94, 55–133.CrossRefGoogle Scholar
  10. Bationo, A., & Mokwunye, A. U. (1991). Role of manures and crop residue in alleviating soil fertility constraints to crop production: With special reference to the Sahelian and Sudanian zones of West Africa. Fertilizer research, 29, 117–125.CrossRefGoogle Scholar
  11. Bationo, A., Kihara, J., Vanlauwe, B., Kimetu, J., Waswa, B. S., & Sahrawat, K. L. (2008). Integrated nutrient management: Concepts and experience from Sub-Saharan Africa. In M. S. Aulakh & A. Cynthia (Eds.), Integrated nutrient Management for Sustainable Crop Production (pp. 467–521). Grant: The Haworth Press, Taylor and Francis Group, New York, USA, Editors.Google Scholar
  12. Becker, M., & Asch, F. (2005). Iron toxicity in rice conditions and management concepts. Journal of Plant Nutrition and Soil Science, 168, 558–573.CrossRefGoogle Scholar
  13. Becker, M., & Johnson, D. E. (1998). Legumes as dry season fallow in upland rice-based systems of West Africa. Biology and Fertility of Soils, 27, 358–367.CrossRefGoogle Scholar
  14. Becker, M., & Johnson, D. E. (1999). The role of legume fallows in intensified upland rice-based systems in West Africa. Nutrient Cycling in Agroecosystems, 53, 71–81. doi: 10.1023/A:1009767530024.CrossRefGoogle Scholar
  15. Becker, M., & Johnson, D. E. (2001a). Improved water control and crop management effects on lowland rice productivity in West Africa. Nutrient Cycling in Agroecosystems, 59, 119–127.CrossRefGoogle Scholar
  16. Becker, M., & Johnson, D. E. (2001b). Cropping intensity effects on upland rice yield and sustainability in West Africa. Nutrient Cycling in Agroecosystems, 59, 107–117.CrossRefGoogle Scholar
  17. Buddenhagen, I. W. (1986). Strategies and approaches to wetland rice improvement. In A. S. R. Juo & Lowe J. A. (Eds.), The Wetlands and rice in Sub–Saharan Africa: Proceedings of an international conference on Wetland utilization for rice production in Sub–Saharan Africa, Ibadan (pp. 97–106).Google Scholar
  18. Buresh, R. J., Smithson, P. C., & Hellums, D. T. (1997). Building soil phosphorus capital in Africa. In R. J. Buresh, P. A. Sanchez, & F. Calhoun (Eds.), Replenishing soil fertility in Africa (pp. 111–149). Madison: Soil Science Society of America Journal.Google Scholar
  19. Buri, M. M., Ishida, F., Kubota, D., Masunaga, T., & Wakatsuki, T. (1999). Soils of flood plains of West Africa: General fertility status. Soil Science & Plant Nutrition, 45, 37–50.CrossRefGoogle Scholar
  20. Buri, M. M., Issaka, R. N., Senayah, J. K., Fujii, H., & Wakatsuki, T. (2012). In P. Sharma (Ed.), Lowland soils for rice cultivation in Ghana. Kwadaso: Crop Production Technologies. ISBN: 978-953-307-787-1.Google Scholar
  21. Cassman, K. G., De Datta, S. K., Olk, D. C., Alcantara, J., Samson, M., Descalsota, J. P., & Dizon, M. (1995). Yield decline and the nitrogen economy of long-term experiments on continuous, irrigated rice in the tropics. In R. Lal & B. A. Stewart (Eds.), Soil management: Experimental basis for sustainability and environmental quality (pp. 181–222). Boca Raton: CRC Press.Google Scholar
  22. Cassman, K. G., Peng, S., & Dobermann, A. (1997). Nutritional physiology of the rice plants and productivity decline of irrigated rice systems in the tropics. In Ando et al. (Eds.), Plant nutrition for sustainable food production and environment. XIII International Plant Nutrition Colloquium (pp. 783–788). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  23. Ceesay, M. (2011). An opportunity for increasing factor productivity for rice cultivation in the Gambia through SRI. Paddy and Water Environment, 9, 129–135.CrossRefGoogle Scholar
  24. Chérif, M., Audebert, A., Fofana, M., & Zouzou, M. (2009). Evaluation of iron toxicity on lowland irrigated rice in West Africa. Tropicultura, 27, 88–92.Google Scholar
  25. CNRA. (2005). Bien cultiver le riz irrigué en Côte d'Ivoire, Fiche technique. Côte d'Ivoire: Centre National de Recherche Agronomique.Google Scholar
  26. Defoer, T., Wopereis, M. C. S., Jones, M. P., Lançon, F., & Erenstein, O. (2002, July 22–25). Challenges, innovation and change: Towards rice-based food security in sub-Saharan Africa. Paper presented at the 20th session of the International Rice Commission, Bangkok.Google Scholar
  27. Diagne, M., Demont, M., Seck, P. A., & Diaw, A. (2012). Self-sufficiency policy and irrigated rice productivity in the Senegal River Valley. Food Security, 5, 55–68. doi: 10.1007/s12571-012-0229-5.CrossRefGoogle Scholar
  28. Diatta, S., & Sahrawat, L. K. (2005). Iron toxicity of rice in West Africa: Screening tolerant varieties and the role of N, P, K and Zn. In Audebert et al. (Eds.), Iron Toxicity in Rice-Based Systems in West Africa (p. 75). Cotonou: Africa Rice Center (WARDA).Google Scholar
  29. Dingkuhn, M., & Sow, A. (1997). Potential yields of irrigated rice in African arid environments. In Miezan et al. (Eds.), Irrigated Rice in the Sahel: Prospects for Sustainable Development (pp. 361–379). Bouaké: West Africa Rice Development Association.Google Scholar
  30. Dingkuhn, M., Sow, A., Samb, A., Diack, S., & Asch, F. (1995). Climatic determinants of irrigated rice performance in the Sahel. I. Photothermal and microclimatic responses of flowering. Agricultural Systems, 48, 385–410.CrossRefGoogle Scholar
  31. DNA. (2012). Guide de production de semences de riz. Direction Nationale de l’Agriculture-Ministère de l’Agriculture du Mali.
  32. Dobermann, A., & White, P. F. (1999). Strategies for nutrient management in irrigated and rainfed lowland rice systems. Nutrient Cycling in Agroecosystems, 53, 1–18.CrossRefGoogle Scholar
  33. Dobermann, et al. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74, 37–66.CrossRefGoogle Scholar
  34. Ekeleme, F., Kamara, A. Y., Omoigui, L. O., Tegbaru, A., Mshelia, J., & Onyibe, J. E. (2008). Guide to rice production in Borno State, Nigeria (p. 20). Ibadan: IITA.Google Scholar
  35. Fairhurst, T., Witt, C., Buresh, R., & Dobermann, A. (2007). Rice: A practical guide to nutrient management (2nd ed., p. 89). Los banos: International Rice Research Institute.Google Scholar
  36. Fiamohe, R., Bamba, I., Seck, P. A., & Diagne, A. (2012). Regional bulk purchase of imported rice initiative by ECOWAS: A feasibility assessment. OIDA International Journal of Sustainable Development, 10, 79–89.Google Scholar
  37. Flinn, J. C., & De Datta, S. K. (1984). Trends in irrigated rice yields under intensive cropping at Philippine research stations. Field Crops Research, 9, 1–15.CrossRefGoogle Scholar
  38. Gala-Bi, T. J., Camara, M., Yao, K. A., & Keli, Z. J. (2011). Profitability of mineral fertilizers on rainfed upland rice cultivation: Case of Gagnoa zone in the middle West of Cote d’Ivoire. Journal of Applied Biosciences, 46, 3153–3162.Google Scholar
  39. GOSL. (2005). Crop production guidelines for Sierra Leone. Freetown: Government of Sierra Leone, MAFFS.Google Scholar
  40. Haefele, S. M., & Wopereis, M. C. S. (2004). Combining field and simulation studies to improve fertilizer recommendations for irrigated rice in the Senegal River valley. In A. Doberman, C. Witt, & D. Dawe (Eds.), Increasing Productivity of Intensive Rice Systems Through Site-specific Nutrient Management (pp. 265–286). Los Baños: Science Publishers, Enfield, New Hampshire and International Rice Research Institute.Google Scholar
  41. Haefele, S. M., Johnson, D. E., Diallo, S., Wopereis, M. C. S., & Janin, I. (2000). Improved soil fertility and weed management is profitable for irrigated rice farmers in Sahelian West Africa. Field Crops Research, 66, 101–113.CrossRefGoogle Scholar
  42. Haefele, S. M., Wopereis, M. C. S., Donovan, C., & Maubuisson, J. (2001). Improving the productivity and profitability of irrigated rice production in Mauritania. European Journal of Agronomy, 14, 181–196.CrossRefGoogle Scholar
  43. Haefele, S. M., Wopereis, M. C. S., & Wiechmann, H. (2002). Long-term fertility experiments for irrigated rice in the West African Sahel: Agronomic results. Field Crops Research, 78, 119–131.CrossRefGoogle Scholar
  44. Haefele, S. M., Wopereis, M. C. S., Ndiaye, M. K., & Kropff, M. J. (2003). A framework to improve fertilizer recommendations for irrigated rice in West Africa. Agricultural Systems, 76, 313–335.CrossRefGoogle Scholar
  45. Haefele, S. M., Wopereis, M. C. S., Schloebohm, A., & Wiechmann, H. (2004). Long-term fertility experiments for irrigated rice in the West African Sahel: Effect on soil characteristics. Field Crops Research, 85, 61–77.CrossRefGoogle Scholar
  46. Haefele, S. M., Naklang, K., Harnpichitvitaya, D., et al. (2006). Factors affecting rice yield and fertilizer response in rainfed lowlands of Northeast Thailand. Field Crops Research, 98, 39–51.CrossRefGoogle Scholar
  47. Haefele, S. M., Saito, K., Ndiaye, K. M., Mussgnug, F., Nelson, A., & Wopereis, M. C. S. (2013). Increasing rice productivity through improved nutrient use in Africa. In Wopereis et al. (Eds.), Realizing Africa′s Rice Promise (pp. 250–264). Wallingford: CAB International.CrossRefGoogle Scholar
  48. Haefele, S. M., Nelson, A., & Hijmans, R. J. (2014). Soil quality and constraints in global rice production (pp. 250–259). Geoderma: International Rice Research Institute.Google Scholar
  49. Homma, K., Horie, T., Shiraiwa, T., Supapoj, N., Matsumoto, N., & Kabaki, N. (2003). Toposequential variation in soil fertility and rice productivity of rainfed lowland paddy fields in mini-watershed (Nong) in Northeast Thailand. Plant Production Science, 6, 147–153.CrossRefGoogle Scholar
  50. IRRI, Africa Rice, CIAT. (2010). Global Rice Science Partnership (GRiSP). November 2010.Google Scholar
  51. Janssen, B. H. (1998). Efficient use of nutrients: An art of balancing. Field Crops Research, 56, 197–201.CrossRefGoogle Scholar
  52. Janssen, B. H., Guiking, F. C. T., Van der Eijk, D., Smaling, E. M. A., Wolf, J., & van Reuler, H. (1990). A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma, 46, 299–318.CrossRefGoogle Scholar
  53. Johnson, D. E. (1997). Weeds of rice in West Africa. Bouaké: WARDA.Google Scholar
  54. Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., Imamura, D. T., Bowen, W. T., & Singh, U. (1998). Decision support system for agrotechnology transfer; DSSATv3. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding options for agricultural production (pp. 157–177). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  55. Karboré, S. P. (2011). La riziculture pluviale stricte une contribution à l’accroissement de la production du riz au Burkina Faso. Mémoire de fin de cycle (p. 56). Bobo-Dioulasso: Université Polytechnique de Bobo-Dioulasso.Google Scholar
  56. Kebbeh, M., & Miezan, K. (2003). Ex-ante evaluation on integrated crop management options for irrigated rice production in the Senegal River Valley. Field Crops Research, 81, 87–97.CrossRefGoogle Scholar
  57. Lô, E. M. (2010). Diagnostic agronomique de la culture du riz en Haute-Casamance et au Sénégal-Oriental. Mémoire d'ingénieur agronome de conception. Ecole Nationale Supérieure d’Agriculture de Thiès, Sénégal.Google Scholar
  58. Meertens, B. (2001). La riziculture irriguée dans la vallée de Zio, Région Maritime, Togo: Contraintes et Possibilité. IFDC-Afrique, Lomé, Togo.Google Scholar
  59. Mirasol, F. P., Eufrocino, V. L., Gines, H. C., & Buresh, J. R. (2008). Soil carbon and nitrogen changes in long-term continuous lowland rice cropping. Soil Science Society of America Journal, 72, 798–807.CrossRefGoogle Scholar
  60. Mutegi, J., Kabambe, V., Zingore, S., Harawa, R., & Wairegi, L. (2015). The fertilizer recommendation issues in Malawi: Gaps, challenges, Opportunities and Guidelines (p. 56). Lilongwe: Soil Health Consortium of Malaw.Google Scholar
  61. Nowo J. G., Floor, J., Kaihuura, F. B. S., & Magoggo, J. P. (1993, September). Review of fertilizer recommendations in Tanzania (Soil fertility report No. F6).Google Scholar
  62. Nyalemegbe, K. K., Yangyuoru, M., Osei-Asare, Y., Ofosu-Budu, G. K., Mellon, S., & Tegbe, R. E. (2012). Enhancing soil productivity in the rain-fed upland ecology through rotational cropping of NERICA (new rice for Africa) and cowpea (Vigna Unguiculata). Agricultural Science Research Journal, 4, 159–166.Google Scholar
  63. Oikeh, S. O., Nwilene, F., Diatta, S., Osiname, O., Touré, A., & Okeleye, K. A. (2008). Responses of upland NERICA rice to nitrogen and phosphorus in forest agroecosystems. Agronomy Journal, 100, 735–741.CrossRefGoogle Scholar
  64. Oikeh, S. O., Houngnandan, P., Abaidoo, R. C., Rahimou, I., Toure, A., Niang, A., & Akintayo, I. (2010). Integrated soil fertility management involving promiscuous dual-purpose soybean and upland NERICA enhanced rice productivity in the savannas. Nutrient Cycling in Agroecosystems, 88, 29–38. doi: 10.1007/s10705-008-9185-z.CrossRefGoogle Scholar
  65. Oldeman, I. R., & Hakkeling, R. T. A. (1990). World map of the status of human-induced soil degradation: An explanatory note. Nairobi: United Nations Environmental Programme.Google Scholar
  66. Olk, D. C., Cassman, K. G., Randall, E. W., Kinchesh, P., Sanger, L. J., & Anderson, J. M. (1996). Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. European Journal of Soil Science, 47, 293–303.CrossRefGoogle Scholar
  67. Ponnamperuma, F. N., & Deturck, R. (1993). A review of fertilization in Rice production. International Rice Commission Newsletter, 42, 1–12.Google Scholar
  68. Powlson, D. S., & Olk, D. C. (2000). Long-term soil organic matter dynamics. In G. J. D. Kirk , D. C. Olk (Eds.), Carbon and nitrogen dynamics in flooded soils (pp 19–22). Paper presented at the Workshop on carbon and nitrogen dynamics in flooded soils. IRRI, Los Banos.Google Scholar
  69. Prade, K., Ottow, J. C. G., Jacq, V. A. (1986). Excessive iron uptake (iron toxicity) by wetland rice (O. Sativa L.) on an acid sulfate soil in the casamance/Senegal. Proceeding of the 3rd international symposium on acid sulfate soils, Dakar, Senegal.Google Scholar
  70. Raes, D., Kafiriti, E. M., Wellens, J., Deckers, J., Maerten, A., Mugog, S., Dondeyne, S., & Descheemaeker, K. (2007). Can soil bunds increase the production of rain-fed lowland rice in South Eastern Tanzania? Agricultural Water Management, 89, 229–235.CrossRefGoogle Scholar
  71. Regmi, A. P., Ladha, J. K., Pathak, H., Pasuquin, E., Bueno, C., Dawe, D., Hobbs, P. R., Joshy, D., Maskey, S. L., & Pandey, S. P. (2002). Yield and soil fertility trends in a 20-year rice-rice-wheat experiment in Nepal. Soil Science Society of America Journal, 66, 857–867.CrossRefGoogle Scholar
  72. Sahrawat, K. L. (1998). Flooding soil: A great equalizer of diversity in soil chemical fertility. Oryza, 35, 300–305.Google Scholar
  73. Sahrawat, K. L. (2004). Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition, 27, 1471–1504.CrossRefGoogle Scholar
  74. Sahrawat, K. L., Jones, M. P., & Diatta, S. (1997). Extractable phosphorus and rice yield in an Ultisol of the humid forest zone in West Africa. Communications in Soil Science and Plant Analysis, 28, 711–716.CrossRefGoogle Scholar
  75. Sahrawat, K. L., Jones, M. P., Diatta, S., & Adam, A. (2001). Response of upland Rice to fertilizer phosphorous and its residual value in an Ultisol. Communications in Soil Science and Plant Analysis, 32, 2457–2468.CrossRefGoogle Scholar
  76. Sahrawat, K. L., Jones, M. P., Diatta, S., & Sika, M. (2003). Long-term phosphorus fertilizer effects on phosphorus uptake, efficiency, and recovery by dryland rice on an Ultisol. Communications in Soil Science and Plant Analysis, 14, 999–1011.CrossRefGoogle Scholar
  77. Saito, K., Azoma, K., & Oikeh, S. O. (2010). Combined effects of Stylosanthes Guianensis fallow and tillage management on upland rice yield, weeds and soils in southern Benin. Soil and Tillage Research, 107, 57–63.CrossRefGoogle Scholar
  78. Saito, K., Diack, S., Dieng, I., & Ndiaye, M. K. (2015). On-farm testing of a nutrient management decision-support tool for rice in the Senegal River valley. Agriculture, 116, 36–44.Google Scholar
  79. Sanchez, P. A., & Buol, S. W. (1985). Agronomic taxonomy for wetland soils. In: Wetland Soils: Characterization, classification, and utilization. Proceedings of a workshop held 26 March to 5 April 1984. International Rice Research Institute, Los Baños, Philippines (pp. 207–229).Google Scholar
  80. Sanchez, P. A., Palm, C. A., & Buol, S. W. (2003). Fertility capability soil classification: A tool to help assess soil quality in the tropics. Geoderma, 114, 157–185.CrossRefGoogle Scholar
  81. Sattaria, S. Z., Van Ittersuma, M. K., Bouwmanb, A. F., Smit, A. L., & Janssen, B. H. (2014). Crop yield response to soil fertility and N. P, K inputs in different environments: Testing and improving the QUEFTS model Field Crops Research, 157, 35–46.Google Scholar
  82. Seck, P. A., Tollens, E., Wopereis, M. C. S., Diagne, A., & Bamba, I. (2010). Rising trends and variability of Rice prices: Threats and opportunities for Sub-Saharan Africa. Food Policy, 35, 403–411.CrossRefGoogle Scholar
  83. Seck, P. A., Diagne, A., Samarendu, M., & Wopereis, M. C. S. (2012). Crops that feed the world 7: Rice. Food Security, 4, 7. doi: 10.1007/s12571-012-0168-1.CrossRefGoogle Scholar
  84. Segda, Z., Haefele, S. M., Wopereis, M. C. S., Sedogo, M. P., & Guinko, S. (2005). Combining field and simulation studies to improve fertilizer recommendations for irrigated rice in Burkina Faso. Agronomy Journal, 97, 1429–1437.CrossRefGoogle Scholar
  85. Segda, Z., Mando, A., Haefele, S. M., Sedogo, M. P., Guinko, S., & Wopereis M. C. S. (2010, November 8–12). Closing yield gaps through partnerships and good agronomy in Africa. Presentation at the 3rd international rice congress, Hanoi, Vietnam.Google Scholar
  86. Smaling, E. M. A., & Janssen, B. H. (1993). Calibration of QUEFTS, a model predicting nutrient uptake and yield from chemical soil fertility indices. Geoderma, 59, 21–44.CrossRefGoogle Scholar
  87. Somado, E. A., Guei, R. G., & Keya, S. O. (2008). NERICA: The new rice for Africa.
  88. Swain, D. K., Herath, S., Pathirana, A., & Mittra, B. N. (2005). Rainfed lowland and flood-prone rice: A critical review on ecology and management technology for improving the productivity in Asia rainfed lowland and flood-prone rice.
  89. Tilahum, T., Minale, L., Alemayehu, A., Belesti, Y., Tesfaye, W. (2007). Effect of nitrogen and phosphorus fertilizers on the yield of rice in Fogera and Metama areas. In A. Ermiase, T. Akalu, A. Alemayehu, W. Melaku, D. Tadesse, & T. Tilahum (Eds.), Proceedings of the 1st annual regional conference on completed crop research activities, Bahir Dar (pp. 14–17).Google Scholar
  90. Touré, A., Becker, M., Johnson, D. E., Koné, B., Kossou, D. K., & Kiepe, P. (2009). Response of lowland rice to agronomic management under different hydrological regimes in an inland valley of Ivory Coast. Field Crops Research, 114, 304–310.CrossRefGoogle Scholar
  91. Tsubo, M., Basnayake, J., Fukai, S., et al. (2006). Toposequential effects on water balance and productivity in rainfed lowland rice ecosystem in southern Laos. Field Crops Research, 97, 209–220.CrossRefGoogle Scholar
  92. Vanlauwe, B., Bationo, A., Giller, K. E., et al. (2010). Integrated soil fertility management. Operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39, 17–24.CrossRefGoogle Scholar
  93. Wang, G., Dobermann, A., Witt, C., Sun, Q., & Fu, R. (2001). Performance of site-specific nutrient Management for Irrigated Rice in Southeast China. Agronomy Journal, 93, 869–878.CrossRefGoogle Scholar
  94. WARDA. (2008). Africa Rice trends, 2007 (p. 74). Cotonou: The Africa Rice Center.Google Scholar
  95. Windmeijer, P. N., Duivenbooden, N. V., & Andriesse, W. (1994). Characterization of Rice-growing agro-ecosystems in West Africa: Semi-detailed characterization of inland valleys in Côte d’Ivoire. Wageningen: Winand Staring Centre (SC-DLO) and Wageningen Agricultural University.Google Scholar
  96. Witt, C., Dobermann, A., Abdulrachman, S., et al. (1999). Internal nutrient efficiencies in irrigated lowland rice of tropical and subtropical Asia. Field Crops Research, 63, 113–138.CrossRefGoogle Scholar
  97. Witt, C., Cassman, K. G., Olk, D. C., Biker, U., Liboon, S. P., Samson, M. I., & Ottow, J. C. G. (2000). Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 225, 263–278.CrossRefGoogle Scholar
  98. Wopereis, M. C. S., Donovan, C., Nebié, B., Guindo, D., & Ndiaye, M. K. (1999). Soil fertility management in irrigated rice systems in the Sahel and savanna regions of West Africa. Part I. Agronomic analysis. Field Crops Research, 61, 125–145.CrossRefGoogle Scholar
  99. Wopereis-Pura, M. M., Watanabe, H., Moreira, J., & Wopereis, M. C. S. (2002). Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley. European Journal of Agronomy, 17, 191–198.CrossRefGoogle Scholar
  100. Worou, O. N. (2012). Experimental analysis and modelling of the rainfed rice cropping systems in West Africa. PhD Thesis. Institut für Pflanzenernährung der Rheinischen Friedrich-Wilhelms-Universität zu Bonn (p.126). Accessed 4 Sept 2017.
  101. Yabi, R. W. (2013). Techniques de production de riz IR 841 dans les bas-fonds de la commune de Glazoué-Département des Collines (Centre Bénin). Rapport final de protocole, (p. 37).Google Scholar
  102. Yamauchi, M. (1989). Rice bronzing in Nigeria caused by nutrient imbalances and its control by potassium sulfate application. Plant and Soil, 117, 275–286.CrossRefGoogle Scholar
  103. Yanggen, D., Kelly, V., Reardon, T., & Naseem, A. (1998). Incentives for fertilizer use in Sub-Saharan Africa: A review of empirical evidence on fertilizer response and profitability (MSU International Development Working Paper No. 70 1998). Michigan 48824.
  104. Yoshida, S. (1981). Fundamentals of rice crop science (269 pp). Los Baños: IRRI.Google Scholar
  105. Zhang, M., & He, Z. (2004). Long term changes in organic carbon and nutrients of an Ultisol under rice cropping in south-east China. Geoderma, 118, 167–179.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vincent Boubie Bado
    • 1
  • Koffi Djaman
    • 2
  • Mel Cesse Valère
    • 2
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)NiameyNiger
  2. 2.Africa Rice Center (AfricaRice) Sahel Regional Center Saint LouisSaint-LouisSenegal

Personalised recommendations