Advertisement

A HJB-POD Approach to the Control of the Level Set Equation

  • Alessandro Alla
  • Giulia Fabrini
  • Maurizio Falcone
Chapter
Part of the MS&A book series (MS&A, volume 17)

Abstract

We consider an optimal control problem where the dynamics is given by the propagation of a one-dimensional graph controlled by its normal speed. A target corresponding to the final configuration of the front is given and we want to minimize the cost to reach the target. We want to solve this optimal control problem via the dynamic programming approach but it is well known that these methods suffer from the “curse of dimensionality” so that we can not apply the method to the semi-discrete version of the dynamical system. However, this is made possible by a reduced-order model for the level set equation which is based on Proper Orthogonal Decomposition. This results in a new low-dimensional dynamical system which is sufficient to track the dynamics. By the numerical solution of the Hamilton-Jacobi-Bellman equation related to the POD approximation we can compute the feedback law and the corresponding optimal trajectory for the nonlinear front propagation problem. We discuss some numerical issues of this approach and present a couple of numerical examples.

Notes

Acknowledgements

The first author is supported by US Department of Energy grant number DE-SC0009324.

References

  1. 1.
    Alla, A., Falcone, M.: An adaptive POD approximation method for the control of advection-diffusion equations. In: Kunisch, K., Bredies, K., Clason, C., von Winckel, G. (eds.) Control and Optimization with PDE Constraints. International Series of Numerical Mathematics, vol. 164, pp. 1–17. Birkhäuser, Basel (2013)Google Scholar
  2. 2.
    Alla, A., Falcone, M., Kalise, D.: An efficient policy iteration algorithm for dynamic programming equations. SIAM J. Sci. Comput. 37, 181–200 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alla, A., Falcone, M., Volkwein, S.: Error Analysis for POD approximations of infinite horizon problems via the dynamic programming principle. SIAM J. Control. Optim. (submitted, 2015)Google Scholar
  4. 4.
    Alla, A., Schmidt, A., Haasdonk, B.: Model order reduction approaches for infinite horizon optimal control problems via the HJB equation. In: Benner, P., et al. (eds.) Model Reduction of Parametrized Systems. MS&A, vol. 17. Springer International Publishing, Cham (2017). doi: 10.1007/978-3-319-58786-8_21 Google Scholar
  5. 5.
    Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Basel (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Barles, G.: Solutions de Visocité des Equations de Hamilton-Jacobi. Springer, Berlin (1994)zbMATHGoogle Scholar
  7. 7.
    Deckelnick, K., Elliott, C.M.: Propagation of graphs in two-dimensional inhomogeneous media. Appl. Numer. Math. 56, 3, 1163–1178 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Deckelnick, K., Elliott, C.M., Styles, V.: Optimal control of the propagation of a graph in inhomogeneous media. SIAM J. Control. Optim. 48, 1335–1352 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. SIAM, Philadelphia (2014)zbMATHGoogle Scholar
  10. 10.
    Grepl, M., Veroy, K.: A level set reduced basis approach to parameter estimation. C. R. Math. 349, 1229–1232 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin, (2009)Google Scholar
  12. 12.
    Kröner, A., Kunisch, K., Zidani, H.: Optimal feedback control of undamped wave equations by solving a HJB equation. ESAIM: Control Optim. Calc. Var. 21, 442–464 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kunisch, K., Xie, L.: POD-based feedback control of Burgers equation by solving the evolutionary HJB equation. Comput. Math. Appl. 49, 1113–1126 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kunisch, K., Volkwein, S., Xie. L.: HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 4, 701–722 (2004)Google Scholar
  15. 15.
    Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. In: Abstract Parabolic Systems. Encyclopedia of Mathematics and Its Applications 74, vol. I. Cambridge University Press, Cambridge (2000)Google Scholar
  16. 16.
    Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. In: Abstract Hyperbolic-Like Systems Over a Finite Time Horizon. Encyclopedia of Mathematics and Its Applications 74, vol. II. Cambridge University Press, Cambridge (2000)Google Scholar
  17. 17.
    Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations, Band 170. Springer, New York/Berlin (1971)CrossRefGoogle Scholar
  18. 18.
    Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  20. 20.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I-II. Q. Appl. Math. XVL, 561–590 (1987)Google Scholar
  21. 21.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Application. American Mathematical Society, Providence (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture Notes, University of Konstanz (2013). http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/scripts.php Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandro Alla
    • 1
  • Giulia Fabrini
    • 2
  • Maurizio Falcone
    • 3
  1. 1.Department of Scientific ComputingFlorida State UniversityTallahasseeUSA
  2. 2.Department of Mathematics and StatisticsUniversity of KonstanzKonstanzGermany
  3. 3.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations