Skip to main content

Leveraging Sparsity and Compressive Sensing for Reduced Order Modeling

  • Chapter
  • First Online:
Model Reduction of Parametrized Systems

Part of the book series: MS&A ((MS&A,volume 17))

Abstract

Sparsity can be leveraged with dimensionality-reduction techniques to characterize and model parametrized nonlinear dynamical systems. Sparsity is used for both sparse representation, via proper orthogonal decomposition (POD) modes in different dynamical regimes, and by compressive sensing, which provides the mathematical architecture for robust classification of POD subspaces. The method relies on constructing POD libraries in order to characterize the dominant, low-rank coherent structures. Using a greedy sampling algorithm, such as gappy POD and one of its many variants, an accurate Galerkin-POD projection approximating the nonlinear terms from a sparse number of grid points can be constructed. The selected grid points for sampling, if chosen well, can be shown to be effective sensing/measurement locations for classifying the underlying dynamics and reconstruction of the nonlinear dynamical system. The use of sparse sampling for interpolating nonlinearities and classification of appropriate POD modes facilitates a family of local reduced-order models for each physical regime, rather than a higher-order global model. We demonstrate the sparse sampling and classification method on the canonical problem of flow around a cylinder. The method allows for a robust mathematical framework for robustly selecting POD modes from a library, accurately constructing the full state space, and generating a Galerkin-POD projection for simulating the nonlinear dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amsallem, D., Cortial, J., Farhat, C.: On demand CFD-based aeroelastic predictions using a database of reduced-order bases and models. In: AIAA Conference (2009)

    Book  Google Scholar 

  2. Amsallem, D., Tezaur, R., Farhat, C.: Real-time solution of computational problems using databases of parametric linear reduced-order models with arbitrary underlying meshes. J. Comput. Phys. 326, 373–397 (2016)

    Article  MathSciNet  Google Scholar 

  3. Amsallem, D., Zahr, M.J., Washabaugh, K.: Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction. Adv. Comput. Math. (2015). doi:10.1007/s10444-015-9409-0

    MathSciNet  MATH  Google Scholar 

  4. Astrid, P.: Fast reduced order modeling technique for large scale LTV systems. In: Proceedings of 2004 American Control Conference, vol. 1, pp. 762–767 (2004)

    Google Scholar 

  5. Baraniuk, R.G.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–120 (2007)

    Article  Google Scholar 

  6. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339, 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Bright, I., Lin, G., Kutz, J.N.: Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements. Phys. Fluids 25, 127102 (2013)

    Article  MATH  Google Scholar 

  10. Brunton, S.L., Tu, J.H., Bright, I., Kutz, J.N.: Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM J. Appl. Dyn. Syst. 13, 1716–1732 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brunton, B.W., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Sparse sensor placement optimization for classification. SIAM J. App. Math. 76, 2099–2122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Candès, E.J.: In: Sanz-Solé, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Compressive sensing. In: Proceeding of the International Congress of Mathematicians, vol. 2, pp. 1433–1452 (2006)

    Google Scholar 

  13. Candès, E.J., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carlberg, K., Barone, M., Antil, H.: Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction. J. Comput. Phys. 330, 693–734 (2017)

    Google Scholar 

  18. Chaturantabut, S., Sorensen, D.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Choi, Y., Amsallem, D., Farhat, C.: Gradient-based constrained optimization using a database of linear reduced-order models. arXiv:1506.07849 (2015)

    Google Scholar 

  20. Deane, A.E., Kevrekidis, I.G., Karniadakis, G.E., Orszag, S.A.: Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids 3, 2337 (1991)

    Article  MATH  Google Scholar 

  21. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Drmać, Z., Gugercin, S.: A new selection operator for the discrete empirical interpolation method—improved a priori error bound and extensions. SIAM J. Sci. Comput. 38(2), A631–A648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Du, Q., Gunzburger, M.: Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation. In: Proceedings of the Fluids Engineering Division Summer Meeting, FEDSM2002–31051. The American Society of Mechanical Engineers (2002)

    Google Scholar 

  25. Eftang, J.L., Patera, A.T., Rønquist, E.M.: An HP certified reduced-basis method for parameterized elliptic PDEs. In: SIAM SISC (2010)

    MATH  Google Scholar 

  26. Elad, M.: Sparse and Redundant Representations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  27. Eldar, Y., Kutyniok, G. (eds.): Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  28. Everson, R., Sirovich, L.: Karhunen-Loéve procedure for gappy data. J. Opt. Soc. Am. A 12, 1657–1664 (1995)

    Article  Google Scholar 

  29. Galletti, B., Bruneau, C.H., Zannetti, L.: Low-order modelling of laminar flow regimes past a confined square cylinder. J. Fluid Mech. 503, 161–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Holmes, P.J., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs in Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  31. Kaiser, E., Noack, B.R., Cordier, L., Spohn, A., Segond, M., Abel, M., Daviller, G., Osth, J., Krajnovic, S., Niven, R. K.: Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754, 365–414 (2014)

    Article  MATH  Google Scholar 

  32. Kaspers, K., Mathelin, L., Abou-Kandil, H.: A machine learning approach for constrained sensor placement. American Control Conference, Chicago, IL, July 1–3, 2015 (2015)

    Google Scholar 

  33. Liberge, E., Hamdouni, A.: Reduced order modelling method via proper orthogonal decomposition (POD) for flow around an oscillating cylinder. J. Fluids Struct. 26, 292—311 (2010)

    Article  Google Scholar 

  34. Ma, X., Karniadakis, G.E.: A low-dimensional model for simulating three-dimensional cylinder flow. J. Fluid Mech. 458, 181–190 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Maday, Y., Mula, O.: A generalized empirical interpolation method: application of reduced basis techniques to data assimilation. Anal. Numer. Partial Differ. Eqn. 4, 221–235 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  37. Nguyen, N.C., Patera, A.T., Peraire, J.: A “best points” interpolation method for efficient approximation of parametrized functions. Int. J. Num. Methods Eng. 73, 521–543 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peherstorfer, B., Willcox, K.: Online adaptive model reduction for nonlinear systems via low-rank updates. SIAM J. Sci. Comput. 37(4), A2123–A2150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Peherstorfer, B., Willcox, K.: Dynamic data-driven reduced-order models. Comput. Methods Appl. Mech. Eng. 291, 21–41 (2015)

    Article  MathSciNet  Google Scholar 

  40. Peherstorfer, B., Willcox, K.: Detecting and adapting to parameter changes for reduced models of dynamic data-driven application systems. Proc. Comput. Sci. 51, 2553–2562 (2015)

    Article  Google Scholar 

  41. Quarteroni, A., Rozza, G. (eds.): Reduced Order Methods for Modeling and Computational Reduction. Springer, Berlin (2014)

    MATH  Google Scholar 

  42. Sargsyan, S., Brunton, S.L., Kutz, J.N.: Nonlinear model reduction for dynamical systems using sparse optimal sensor locations from learned nonlinear libraries. Phys. Rev. E 92, 033304 (2015)

    Article  Google Scholar 

  43. Sargasyan, S., Brunton, S.L., Kutz, J.N.: Online interpolation point refinement for reduced order models using a genetic algorithm. arxiv:1607.07702

    Google Scholar 

  44. Venturi, D., Karniadakis, G.E.: Gappy data and reconstruction procedures for flow past cylinder. J. Fluid Mech. 519, 315–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Willcox, K.: Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids 35, 208–226 (2006)

    Article  MATH  Google Scholar 

  46. Yildirim, B., Chryssostomidis, C., Karniadakis, G.E.: Efficient sensor placement for ocean measurements using low-dimensional concepts. Ocean Model. 273(3–4), 160–173 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

J.N. Kutz would like to acknowledge support from the Air Force Office of Scientific Research (FA9550-15-1-0385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nathan Kutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kutz, J.N., Sargsyan, S., Brunton, S.L. (2017). Leveraging Sparsity and Compressive Sensing for Reduced Order Modeling. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds) Model Reduction of Parametrized Systems. MS&A, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-58786-8_19

Download citation

Publish with us

Policies and ethics