Skip to main content

Denoising by Inpainting

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

The filling-in effect of diffusion processes has been successfully used in many image analysis applications. Examples include image reconstructions in inpainting-based compression or dense optic flow computations. As an interesting side effect of diffusion-based inpainting, the interpolated data are smooth, even if the known image data are noisy: Inpainting averages information from noisy sources. Since this effect has not been investigated for denoising purposes so far, we propose a general framework for denoising by inpainting. It averages multiple inpainting results from different selections of known data. We evaluate two concrete implementations of this framework: The first one specifies known data on a shifted regular grid, while the second one employs probabilistic densification to optimise the known pixel locations w.r.t. the inpainting quality. For homogeneous diffusion inpainting, we demonstrate that our regular grid method approximates the quality of its corresponding diffusion filter. The densification algorithm with homogeneous diffusion inpainting, however, shows edge-preserving behaviour. It resembles space-variant diffusion and offers better reconstructions than homogeneous diffusion filters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM J. Appl. Math. 70(1), 333–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the SIGGRApPH 2000, New Orleans, LI, pp. 417–424, July 2000

    Google Scholar 

  3. Bruhn, A., Weickert, J.: A confidence measure for variational optic flow methods. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties from Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 283–297. Springer, Dordrecht (2006)

    Chapter  Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Proc. 6(2), 298–311 (1997)

    Article  Google Scholar 

  6. Chen, Y., Yu, W., Pock, T.: On learning optimized reaction diffusion processes for effective image restoration. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, pp. 5261–5269, June 2015

    Google Scholar 

  7. Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based image compression. In: Proceedings of the 19th Computer Vision Winter Workshop, Křtiny, Czech Republic, pp. 19–26, February 2014

    Google Scholar 

  8. Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numer. Math. 31(4), 377–403 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Proc. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  10. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece, vol. 2, pp. 1033–1038, September 1999

    Google Scholar 

  11. Fritsch, D.S.: A medial description of greyscale image structure by gradient-limited diffusion. In: Proceedings of SPIE Visualization in Biomedical Computing 1992, vol. 1808, pp. 105–117. SPIE Press, Bellingham (1992)

    Google Scholar 

  12. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31(2–3), 255–269 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 151–164. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40395-8_12

    Chapter  Google Scholar 

  14. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  15. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962). (in Japanese)

    Google Scholar 

  16. Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012). doi:10.1007/978-3-642-24785-9_3

    Chapter  Google Scholar 

  17. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings of the 1998 IEEE International Conference on Image Processing, Chicago, IL, vol. 3, pp. 259–263, October 1998

    Google Scholar 

  18. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8, 565–593 (1986)

    Article  Google Scholar 

  19. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  20. Peter, P., Weickert, J., Munk, A., Krivobokova, T., Li, H.: Justifying tensor-driven diffusion from structure-adaptive statistics of natural images. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 263–277. Springer, Cham (2015). doi:10.1007/978-3-319-14612-6_20

    Google Scholar 

  21. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205–229 (2009)

    Article  Google Scholar 

  22. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. J. Math. Imaging Vis. 12(1), 43–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Understanding, optimising, and extending data compression with anisotropic diffusion. Int. J. Comput. Vis. 108(3), 222–240 (2014)

    Article  MathSciNet  Google Scholar 

  25. Schönlieb, C.B.: Partial Differential Equation Methods for Image Inpainting. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  26. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, Washington (1977)

    MATH  Google Scholar 

  27. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  28. Weickert, J., Steidl, G., Mrázek, P., Welk, M., Brox, T.: Diffusion filters and wavelets: what can they learn from each other? In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 3–16. Springer, New York (2006)

    Google Scholar 

  29. Weyrich, N., Warhola, G.T.: Wavelet shrinkage and generalized cross validation for image denoising. IEEE Trans. Image Proc. 7(1), 82–90 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Peter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Adam, R.D., Peter, P., Weickert, J. (2017). Denoising by Inpainting. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics