Insects Today and in the Future

  • Hans-Dietrich ReckhausEmail author
Part of the Fascinating Life Sciences book series (FLS)


How have insects developed worldwide in recent years? Have their numbers increased or decreased? How will their development continue to progress? It is difficult to answer these questions, since most insect species have not yet been discovered and accordingly, their populations have not been investigated. Estimates of their numbers range between two and ten million. Particularly in tropical rain forests, it is assumed that there are many times more insect species than the million species known to exist today. The diversity in these habitats is ten times higher than in forest biotopes of Central Europe. Local populations of insects and their development depend on several factors, e.g., temperature/atmospheric humidity, food supply, breeding possibilities, and natural enemies. This chapter elaborates on anthropogenic effects on habitats, climate change, urbanization, traffic, agriculture, sulfur and nitrogen emissions, and forestry and shows the effects on the insects’ population development. The author then gives an outlook on the insects’ long-term reaction to anthropogenic influences.


Climate Warming Insect Species Extreme Weather Event Tropical Rain Forest Insect Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ball, S. G., Morris, R. K. A. (2014): A review of the scarce and threatened flies of Great Britain. Part 6: Hoverflies family Syrphidae.Google Scholar
  2. Baufeld, P., Unger, J.-G., & Heimbach, U. (2011). Westlicher Maiswurzelbohrer (p. 1). Informationsblatt des JKI. Braunschweig: Julius Kühn-Institut.Google Scholar
  3. Bebber, D. P. et al. (2013): Crop pests and pathogens move polewards in a warming world. In Nature climate change, (No. 3, p. 985 ff).Google Scholar
  4. Berenbaum, M. (2009): Insect biodiversity—millions and millions. In R. G. Foottit, & P. H. Adler (Eds.), Insect biodiversity. Science and society (p. 576 ff). Chichster: Wiley & Sons.Google Scholar
  5. BMELV. (2007). Agrobiodiversität erhalten, Potentiale der Land-, Forst- und Fischer-reiwirtschaft erschliessen und nachhaltig nutzen (p. 12). Bonn: BMELV.Google Scholar
  6. Bradley, N. L. et al. (1999). Phenological changes reflect climate change in Wisconsin. In Proceedings of the National Academy of Sciences, USA (Vol. 96, p. 9701 ff).Google Scholar
  7. Braun, S., & Flückiger, W. (2004). Bodenversauerung in Waldbeobachtungsflächen der Schweiz. In B. G. S. Bulletin (Eds.) (2004) (No. 27, pp. 59–62).Google Scholar
  8. Bundesamt für Naturschutz (BfN). (2011a). Band 3: Wirbellose Tiele (Teil 1). In Naturschutz und Biologische Vielfalt (Vol. 70, No. 3, p. 405).Google Scholar
  9. Bundesamt für Naturschutz (BfN). (2011b). Band 3: Wirbellose Tiere (Teil 1). In Naturschutz und Biologische Vielfalt (Vol. 70, No. 3, p. 453 ff).Google Scholar
  10. Bundesamt für Naturschutz (BfN). (2011c). Band 3: Wirbellose Tiere (Teil 1). In Naturschutz und Biologische Vielfalt (Vol. 70, No. 3, p. 13 ff).Google Scholar
  11. Bundesamt für Naturschutz (BfN). (2011d). Band 3: Wirbellose Tiere (Teil 1). In Naturschutz und Biologische Vielfalt (Vol. 70, No. 3, p. 483).Google Scholar
  12. Bundesamt für Naturschutz (BfN). (2012). Pressehintergrund, Rote Liste, Band 3—Wirbellose Tiere (Teil 1) (pp. 1, 2). Bonn.Google Scholar
  13. Carrington, L. B. et al. (2013). Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. Plos One, 8(3), 3 ff.Google Scholar
  14. Crick, H. Q., Dudley, C., & Glue, D. E. (1997). UK birds are laying eggs earlier. Nature, 388, 526.CrossRefGoogle Scholar
  15. Descimon, H. et al. (2006). Decline and extinction of Parnassius apollo populations in France—continued. In E. Kuhn, R. Feldman & J. Settele (Eds.), Studies on the ecology and conservation of butterflies in Europe. Sofia, Bulgaria: Pensoft.Google Scholar
  16. Deutsche Bundesregierung. (2012). Nationale Nachhaltigkeitsstrategie, Fortschrittsbericht 2012 (p. 70 f). Berlin.Google Scholar
  17. Deutsches Umweltbundesamt. (n.d.). Durch Umweltschutz die biologische Vielfalt erhalten (p. 62 ff). Bonn: Deutsches Umweltbundesamt.Google Scholar
  18. Deutsches Umweltbundes-amt. (n.d.). Durch Umweltschutz die biologische Vielfalt erhalten (p. 28). Berlin: Deutsches Umweltbundesamt.Google Scholar
  19. Deutsches Umweltbundesamt. (n.d.). Durch Umweltschutz die biologische Vielfalt er-halten (p. 53). Berlin: Deutsches Umweltbundesamt.Google Scholar
  20. Dullingera, S., Esslb, F. et al. (2007). Europe‘s other debt crisis caused by the long legacy of future extinctions. In Proceedings of the National Academy of Sciences of the United States of America (PNAS) (Vol. 110, No. 18, p. 7342 ff).Google Scholar
  21. Entrup, N. L., Kivelitz, H. (2010). Bedeutung des Maisanbaus für die Landwirtschaft. In Fachtagung 18.2.2010 (p. 9). Hannover: Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küstenschutz und Naturschutz.Google Scholar
  22. Food and Agriculture Organization FAO. (2010). Global forest resources assessment 2010 (p. 17). Rome.Google Scholar
  23. FAO. (2013a). FAO Statistical yearbook 2013. World food and agriculture (O. 10). Rome: FAO.Google Scholar
  24. Food and Agriculture Organization FAO. (2013b): (2013). FAO Statistical yearbook 2013. World food and agriculture (p. 204). Rome: FAO.Google Scholar
  25. FAO. (2015a). FAO, statistics division 2015. Rome. Accessed November 3, 2015.
  26. Food and Agriculture Organization FAO. (2015b). Global forest resources assessment 2015. How are the world s forest cahinging (p. 3). Rome.Google Scholar
  27. Forister M. L., & Shapiro A. M. (2003). Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology (9), 1130 ff.Google Scholar
  28. Fox, R., Warren, M. S., & Brereton, T. (2010). The butterfly red list for Great Britain. Joint Nature Conservation Committee.Google Scholar
  29. Franco, A. M. A. et al. (2006). Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biology (12), 1545 ff.Google Scholar
  30. Freier, B., Wendt, C., Neukampf, R. (2015). Zur Befallssituation des Maiszünslers (Ost-rinia nubilalis) und Westlichen Maiswurzelbohrers (Diabrotica virgifera virgifera) in Deutschland und deren Bekämpfung. Journal für Kulturpflanzen, 67(4), 113. Stuttgart: Verlag Eugen Ulmer KG.Google Scholar
  31. Gaspers, C. (2009). The European corn borer (Ostrinia nubilalis, Hbn.), its susceptibility to the Bt-toxin Cry1F, its pheromone races and its gene flow in Europe in view of an insect resistance management (p. 1). Dissertation Universität Aachen.Google Scholar
  32. Gibbs J. P., & Breisch A. R. (2001). Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conservation Biology 15, 1175 ff.Google Scholar
  33. Githeko, A. K. et al. (2000). Climate change and vector-borne diseases: A regional analysis. Bulletin of the WHO, 78, 1136 ff.Google Scholar
  34. Harrington R., Woiwod, I., & Sparks, T. (1999). Climate change and trophic interactions. Trends in Ecology & Evolution, (14), 146 ff.Google Scholar
  35. International Union for Conservation of Nature. (2010a). European red list of syproxylic beetles (p. 10 ff). Luxembourg: Publications Office of the European Union.Google Scholar
  36. International Union for Conservation of Nature. (2010b). European red list of butter-flies (p. viii ff). Luxembourg: Publications Office of the European Union.Google Scholar
  37. International Union for Conservation of Nature. (2014). European red list of bees (p. 10 ff). Luxembourg: Publications Office of the European Union.Google Scholar
  38. Klasen, J.; Schrader, G. (2011). Bettwanzen: Biologie des Parasiten und Praxis der Bekämpfung. In Fortbildung für den öffentlichen Gesundheitsdienstes 2011, 23–25.03.2011 (p. 27).Google Scholar
  39. Klasen, J. et al. (2008). Einfluss von Klimaänderungen auf vektorübertragende Krankheiten. In Vortrag Umweltbundesamt (p. 7–9).Google Scholar
  40. Kupca, A. M. (2009). Ixodus ricinus (Ixodidae): Saisonale Aktivität und natürliche Infektionen mit dem FSME-Virus an ausgewählten Standorten in Bayern. Dissertation Ludwig-Maximilian Universität zu München (p. 6).Google Scholar
  41. Le Comité français de l’Union internationale pour la conservation de la nature (UICN). (2014). La Liste rouge des espèces menacées en France. Papillons de jour de France métropolitaine.Google Scholar
  42. Meise, T. (2003). Monitoring der Resistenzentwicklung des Maiszünsler (Ostrinia nubilalis, Hübner) gegenüber Bt-Mais (p. 9). Dissertation Universität Göttingen.Google Scholar
  43. Meissle, M. et al. (2009). Pests, pesticide use and alternative options in European maize production: Current status and future prospects. Journal of Applied Entomology, 134, 363 f. Blackwell Verlag.Google Scholar
  44. Mücke, H.-G. et al. (2009). Gesundheitliche Anpassung an den Klimawandel (P. 7 ff). Berlin: UBA.Google Scholar
  45. Müller-Motzfeld, G. (2007). Klimawandel und Faunenveränderung bei Insekten. In Gemeinsame Tagung des NABU-BFA Entomologie mit dem LFA Entomologie Berlin/Brandenburg sowie den Berliner entomologischen Fachgruppen, dem Entomologischen Verein Orion und dem Naturkundemuseum der Humboldt-Universität vom (p. 2). 13.-14. Oktober 2007.Google Scholar
  46. Natural England. (2015). A review of the beetles of Great Britain. The Darkling Beetles and their allies (Natural England Commissioned Report NECR148).Google Scholar
  47. Naturschutzbund Deutschland (NABU). (2008). Waldwirtschaft 2020. Perspektiven und Anforderungen aus Sicht des Naturschutzes (p. 6). Berlin: NABU.Google Scholar
  48. Parmesan, C. (1996). Climate and species’ range. Nature (382), 765 f.Google Scholar
  49. Parmesan, C. (2006a). Provides a good overview of the studies performed on the effects of climate warming on the quality of natural habitats with special consideration of the insect biotopes.Google Scholar
  50. Parmesan, C. (2006b). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637–669.CrossRefGoogle Scholar
  51. Paulson, D. R. (2001). Recent odonata records from southern Florida: Effects of global warming? International Journal of Odonatology (4), 57 ff.Google Scholar
  52. Bundesamt für Umwelt: Rote Liste der Tagfalter und Widderchen (2014). Berne: Bundesamt für Umwelt, 1 ff.Google Scholar
  53. Sobczyk, T. (2014). Der Eichenprozessionsspinner in Deutschland. In BfN-Skripten (No. 365, p. 27 ff).Google Scholar
  54. Stark, K. et al. (2009). Die Auswirkungen des Klimawandels. Welche neuen Infektionskrankheiten und gesundheitlichen Probleme sind zu erwarten? In Bundesgesundheitsblatt (p. 1).Google Scholar
  55. Statistisches Bundesamt (2014). Statisches Jahrbuch 2014. Wiesbaden: Statisches Bundesamt (pp. 469, 482 ff).Google Scholar
  56. Stöckli, S. et al. (2012). Einfluss der Klimaänderung auf den Apfelwickler. In Schweizer Zeitschrift für Obst- und Weinbau (No. 19/12, p. 7 ff).Google Scholar
  57. Sutton, S. L., Collins, N. M. (1991). Insects and tropical forest conservation. In The Conservation of Insects and their Habitats (pp. 405–424). London: Academic Press.Google Scholar
  58. Thomas, C. D. et al. (2001). Ecological and evolutionary processes at expanding range margins. Nature (411), 577 ff.Google Scholar
  59. Townsend, C. R. et al. (2002). Ökologie (2nd edition, p. 434). Heidelberg/Berlin: Springer Verlag.Google Scholar
  60. Umweltbundesamt. (2013a). Beobachteter Klimawandel. 23.07.2015. Accessed November 4, 2015.
  61. Umweltbundesamt. (2013b). Zu erwartende Klimaänderungen bis 2100. 25.07.2013. Accessed November 4, 2015.
  62. Wiggenhorn, R. (2015). Auftreten tierischer Schädlinge in Mais und Strategien zur Bekämpfung. In Fachtagung des Deutschen Maiskomitees e.V. (DMK) am 20. Oktober 2015 in Saerbeck (p. 10). Saerbeck: Deutsches Maiskomitee.Google Scholar
  63. Wilson E. O. (1988). The current state of biological diversity. In Wilson E. O. (Ed.), Editor biodiversity (p. 4 ff). Washington: Washington National Academic Press.Google Scholar
  64. Wilson, E. O. (1997). Der Wert der Vielfalt, Die Bedrohung des Artenreichtums und das Überleben des Menschen (p. 171). Munich: Piper Verlag.Google Scholar
  65. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen WBGU. (2011). Welt im Wandel. Gesellschaftsvertrag für eine Grosse Transformation (p. 38 f). Berlin: WBGU.Google Scholar
  66. World Wide Fund for Nature WWF. (2014). Auswirkungen des Klimawandels auf Arten weltweit (p. 1). Hintergrundinformationen: WWF.Google Scholar
  67. Zaller, J. G. et al. (2014). Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Frontiers in Environmental Science 2, 44. doi: 10.3389/fenvs.2014.00044
  68. Zimmermann, O. et al. (2014). Die Bekämpfung von bivoltinen Maiszünsler Populationen—ein Fazit aus Forschung & Praxis. In 59. Deutsche Pflanzenschutztagung, “Forschen—Wissen—Pflanzen schützen: Ernährung sichern!” 23. bis 26. September 2014, Freiburg (p. 485).Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.TeufenSwitzerland

Personalised recommendations