Advertisement

Insects as Beneficials

  • Hans-Dietrich ReckhausEmail author
Chapter
  • 533 Downloads
Part of the Fascinating Life Sciences book series (FLS)

Abstract

The benefits that insects offer to nature and humans are as diverse as they are inestimable. Insects pollinate plants, thus enabling many cycles to take place in our ecosystem in the first place. They are growth accelerators and make an essential contribution to the diversity of species and habitats (the so-called biodiversity). Insects are the main food source for many animals. Especially birds and freshwater fish cannot survive without them. Insects therefore play a key role in numerous food chains. Thus, they also serve as feed for farm animals. For humans, insects produce important foodstuffs and help to improve hygiene. They even support us in the battle against themselves and also promote our economy and our society with numerous services. This chapter elaborates on the benefits the society takes from insects: pollination, plant growth, biodiversity, connection in the food chain, nutrition as food and feed, hygiene, biocide alternatives, and general support of the economy.

Keywords

Agriculture Organization Dung Beetle Butterfly Species Scale Insect Parasitic Wasp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aizen, M. A., et al. (2009). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 103(9), 1579–1588.CrossRefGoogle Scholar
  2. Aizen, M. A., et al. (2009b). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 103, 1579 ff.Google Scholar
  3. Al-Kirshi, A. G. S. (1998). Untersuchungen zur biologischen Bekämpfung von Trogoderma granarium EVERTS, Trogoderma angustum (SOLIER) und Anthre- nus ver-basci L. (Coleoptera, Dermestidae) mit dem Larvalparasitoiden Laelius pedatus (SAY) (Hymenoptera, Bethylidae) (p. 3 ff). Dissertation Humboldt-Universität zu Berlin.Google Scholar
  4. Aukema, J. E., et al. (2011). Economic impacts of non-native forest insects in the continental United States. PLoS ONE, 6(9), e24587. doi: 10.1371/journal.pone.0024587
  5. Bär, M. (2009). Nützlinge für den Vorratsschutz. In: bioaktuell 2/09 (p. 4 ff).Google Scholar
  6. Bauer, K. M., Glutz von Blotzheim, U. N. (2001). Handbuch der Vögel Mitteleuropas (pp. 329–336).Google Scholar
  7. Bauer, H. G., et al. (2011). Das Kompendium der Vögel Mitteleuropas. Ein umfassendes Handbuch zu Biologie, Gefährdung und Schutz (p. 745). Wiebelsheim: AULA-Verlag.Google Scholar
  8. Bawa, K. S. (1990). Plant–pollinator interactions in tropical rainforests. Annual Review of Ecology and Systematics, 21, 299–422.Google Scholar
  9. Beller, J. (2006). Bodeneigenschaften und Insekten/Spinnen. In Bodenschutz – eine Aufgabe des Naturschutzes? (p. 5).Google Scholar
  10. Berenbaum, M. R. (1997). Blutsauger, Staatsgründer, Seidenfabrikanten. Die zwiespältige Beziehung zwischen Mensch und Insekt. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  11. Berenbaum, M. (2001, July). Unerwarteter Weltuntergang. Was geschähe, wenn plötzlich alle Insekten aussterben würden? In Neue Züricher Zeitung Folio (p. 14).Google Scholar
  12. Bornemissza, G. F. (1976). The Australian dung beetle project 1965–1975. Australian Meat Research Committee Review, 30, 1–30.Google Scholar
  13. Bosch, S. (2003). Segler am Sonnenhimmel (p. 32). Niebüll: Verlag Videel.Google Scholar
  14. Bundesamt für Naturschutz (BfN). (2009). Blütenbestäuber und Biodiversität. www.bfn.de/0326_bestaeuber.html. Accessed August 25, 2014.
  15. Bundesamt für Naturschutz. (2012). Hintergrundinfo: Naturschutz/Biologische Vielfalt/Daten zur Natur, 20 Jahre nach Rio: Daten zur Natur ermöglichen Standortbestimmung zu Schutz und Entwicklung der biologischen Vielfalt (p. 4). Bonn: Bundesamt für Naturschutz.Google Scholar
  16. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. (2007). Nationale Strategie zur biologischen Vielfalt (p. 17). Berlin: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit.Google Scholar
  17. Capinera, J. L. (2010). Insects and wildlife. Arthropods and their relationships with wild vertebrate animals (p. 152 ff). Oxford: Wiley-Blackwell.Google Scholar
  18. Centers for Disease Control and Prevention. (2015). Annual U.S. HPS Cases and Case-fatality, 1993–2013. www.cdc.gov/hantavirus/surveillance/annual-cases.html. Accessed October 26, 2015.
  19. Cerutti, H. (2011). Wie Hans Rudolf Herren 20 Millionen Menschen rettete. Die ökologische Erfolgsstory eines Schweizers (p. 37 ff). Zürich: Orell Füssli Verlag.Google Scholar
  20. Convention on Biological Diversity. (2010). Global Biodiversity Outlook 3. Montreal: Secretariat of Convention on Biological.Google Scholar
  21. Dacke, M., et al. (2013). Dung beetles use the Milky Way for orientation. Current Biology, 23(4), 298 ff (Elsevier).Google Scholar
  22. Deutsche Bundesregierung. (2012). Nationale Nachhaltigkeitsstrategie, Fortschrittsbericht 2012 (p. 71 f). Berlin.Google Scholar
  23. Eckmann, R., & Schleuter-Hofmann, D. (2013). Der Flussbarsch - Perca fluviatilis: Biologie, Ökologie und fischereiliche Nutzung (p. 74). Hohenwarsleben: Westarp-Wissenschaft.Google Scholar
  24. Elkinton, J. S., & Boettner, G. H. (2004). The effects of Compsilura concinnata, an introduced generalist tachinid, on the non-target species in North America: A cautionary tale. In R. van Driesche & T. Murray (Eds.), Assessing host ranges of parasitoids and predators (p. 4 ff). US Forest Service Gen Tech Bull.Google Scholar
  25. Europäische Kommission. (2010). Optionen für ein Biodiversitätskonzept und Bio-diversitätsziel der EU für die Zeit nach 2010. Mitteilung der Kommission an das Europäische Parlament, den Rat, den Europäischen Wirtschafts- und Sozialausschuss und den Ausschuss der Regionen (p. 2). Brüssel: Europäische Kommission.Google Scholar
  26. Food and Agriculture Organization of the United Nations. (2013). Edible insects. Future prospects for food and feed security. FAO: Rome.Google Scholar
  27. Food and Agriculture Organization of the United Nations (FAO). (2008). Rapid Assessment of Pollinators’ Status. A contribution to the international initiative for the conversation and sustainable use of pollinators (p. 5). Rome: FAO.Google Scholar
  28. Glowing Plant. (2015). Natural lighting without electricity. www.glowingplant.com. Accessed August 13, 2015.
  29. Greenpeace e.V. (2013). Bye Bye Biene? Das Bienensterben und die Risiken für die Landwirtschaft in Europa. Hamburg: Greenpeace e.V.Google Scholar
  30. Grosse, W. R. (1994). Der Laubfrosch. Hyla arborea (p. 169 ff). Magdeburg: Westarp-Wissenschaften.Google Scholar
  31. Günther, R. (1990). Die Wasserfrösche Europas. Anura-Froschlurche (p. 91). Wittenberg Lutherstadt: Ziemsen Verlag.Google Scholar
  32. Henneman, M. L., & Memmott, J. (2001, August 8). Infiltration of a Hawaiian community by introduced biological control agents. Science, 293, 1314 ff.Google Scholar
  33. Hölldobler, B., & Wilson, E. (2013). Der Superorganismus. Der Erfolg von Ameisen, Bienen, Wespen und Termiten (p. 1 ff). Berlin: Springer.Google Scholar
  34. Jaksic-Born, C., et al. (2006). Natura. Grundlagen der Biologie für Schweizer Maturi-tätsschulen (p. 36). Zug: Klett und Balmer Verlag.Google Scholar
  35. Jehle, J. A., et al. (2013). Statusbericht Biologischer Pflanzenschutz 2013 (p. 33 ff). Braunschweig: Julis Kühn Institut.Google Scholar
  36. Klein, A.-M., et al. (2007a). Importance of pollinators in changing landscapes for world crop. Proceedings of the Royal Society B, Biological Science, 274(1608), 304.CrossRefGoogle Scholar
  37. Klein, A.-M., et al. (2007b). Importance of pollinators in changing landscapes for world crop. Proceedings of the Royal Society B, Biological Science, 274(1608), 303 ff.Google Scholar
  38. Klein, A.-M., et al. (2007b). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B, Biological Science, 274(1608), 306.CrossRefGoogle Scholar
  39. Klewen, R. (1991). Landsalamander Europa: 1. Die Gattungen Salamandra und Mertensiella (2nd ed., p. 79 ff). Wittenberg Lutherstadt: Ziemsen-Verlag.Google Scholar
  40. Korodi Gal, I. (1975). Contribuții la cunoașterea biologiei reproducerii și hranei puilor la ghionoaia verde (Picus viridis L.). Muzeul Brukenthal. Studii și Comunicări. Științele Naturii, 19.Google Scholar
  41. Kremen, C., et al. (2007a). Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 10(4), 299–314, 306.Google Scholar
  42. Kremen, C., et al. (2007). Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters., 10, 299.CrossRefGoogle Scholar
  43. Künast, C. (n.d.). Blütenbestäuber brauchen mehr Lebensraum. Wie Eh da-Flächen die biologische Vielfalt fördern können. Berlin: Fördergemeinschaft Nachhaltige Landwirtschaft e.V. (FNL) Initiative “Innovation & Naturhaushalt”, p. 11.Google Scholar
  44. Kuzmin, S. L. (1995). Die Amphibien Russlands und angrenzender Gebiete (p. 170 ff). Magdeburg: Westarp-Wissenschaften.Google Scholar
  45. Lautenbach, S., et al. (2012). Spatial and temporal trends of global pollination benefit. PLoS ONE, 7(4), e35954. doi: 10.1371/journal.pone.0035954 CrossRefGoogle Scholar
  46. Leins, P., & Erbar, C. (2008). Blüte und Frucht. Aspekte der Morphologie, Entwick- lungsgeschichte, Phylogenie, Funktion und Ökologie (2 revised ed.). Stuttgart: Schweizerbart‘sche Verlagsbuchhandlung.Google Scholar
  47. Löhrl, H. (1991). Die Haubenmeise. Parus cristatus. Wittenberg Lutherstadt: Ziemsen Verlag.Google Scholar
  48. Losey, J. E., Vaughan, M. (2006). The economic value of ecological services provided by insects. Bioscience, 56, 311 ff.Google Scholar
  49. Maribus et al. (Ed.). (2013). Die Zukunft der Fische – die Fischerei der Zukunft (p. 85). Hamburg: Maribus.Google Scholar
  50. Markus, M. (2014). Unsere Welt ohne Insekten? Ein Teil der Natur verschwindet (p. 21). Stuttgart: Franck-Kosmos Verlag.Google Scholar
  51. Melde, M. (1991). Die Singdrossel. Turdus philomelos (p. 79 ff). Wittenberg Lutherstadt: Ziemsen Verlag.Google Scholar
  52. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Biodiversity synthesis (p. 3 f). Washington, D.C.: World Resources Institute.Google Scholar
  53. Myers, H. M., et al. (2008). Development of Black Soldier Fly (Diptera: Stratiomyidae) Larvae Fed Dairy Manure. Environmental Entomology, 37(1), 11.CrossRefGoogle Scholar
  54. OECD, Food and Agriculture Organization of the United Nations. (2013). OECD—FAO Agricultural Outlook 2013–2022. OECD/FAO: Highlights. O.O.Google Scholar
  55. O’Toole, C. (2000). Faszinierende Insekten. Wunder und Rätsel einer fremden Welt (p. 205). Augsburg: Weltbild Verlag.Google Scholar
  56. Pearson, D. E., & Caalawy, R. M. (2006). Biological control agents elevate hnatavirus by subsidizing deer mouse populations. Ecology Letters, 9, 443.CrossRefGoogle Scholar
  57. Pearson, D. E., McKelvey, K. S., & Ruggiero, L. F. (1999). Non-target effects of an introduced biological control agent on deer mouse ecology. In Oecologia (2000) (Vol. 122, p. 122). Springer.Google Scholar
  58. Peck, R. W., et al. (2008). Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island. In Biol Invasions (Vol. 10, p. 1452). Springer Science+Business Media B.V.Google Scholar
  59. Peters, M. (2013). Application of edible insects: Insects as the missing link in de-signing a circular economy. In: Edible insects. Future prospects for food and feed security (p. 114 f). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  60. Radtke, O. A. (1999). Die Insekten als ständige Mit- und Gegenspieler des Menschen. In BIOkular (p. 6).Google Scholar
  61. Roubik, D. W. (1995). Pollination of cultivated plants in the tropics. In FAO Agricultural Services Bulletin (Vol. 118). Rome: FAO.Google Scholar
  62. Rufli, T. (2002, July 26). Biochirurgie, bewährtes Verfahren in der Wundbehandlung. Deutsches Ärzteblatt, 30, A 2038.Google Scholar
  63. Schneller, H. (2009). Biologische Schädlingsbekämpfung mit Nützlingen (p. 8). Presentation on 2.2.2009. Augustenberg: Landwirtschaftliches Technologiezentrum.Google Scholar
  64. Schober, W. (1998). Die Hufeisennase: Rhinolophidae (p. 29). Hohenwarsleben: Westarp-Wissenschaften.Google Scholar
  65. Schulbiologiezentrum des Landkreises Marburg-Biedenkopf. (2001). Praxiskauz 2. Wir untersuchen den Lebensraum Boden. Tiere in der Laub- und Nadelstreu (3rd ed.). Marburg: Arbeitshilfe zur Umwelterziehung, Schulbiologiezentrum des Landkreises Marburg-Biedenkopf.Google Scholar
  66. Story, J. M. (1984). Status of Biological Weed Control in Montana. In E. S. Delfosse (Ed.), VI. International Symposium Biological Control Weeds, 19–25 August 1984 (p. 838). Vancouver, Canada: Agriculture Canada.Google Scholar
  67. Tobin, P. C., et al. (2012, July–September). The ecology, geopolotocs, and economics of managing Lymantria dispar in the United States. International Journal of Pest Management, 58(3), 195 ff.Google Scholar
  68. Townsend, C. R., et al. (2003). Ökologie (2nd ed., p. 391 ff). Berlin: Springer.Google Scholar
  69. Tschirner, M., & Simon A. (2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. Wageningen Academic Publishers Journal of Insects as Food and Feed, 1.Google Scholar
  70. Vasisht, K., & Kumar, V. (2004). Africa, Compendium of medicinal and aromatic Plants (p. 1). Trieste: United Nations Industrial Development Organization and the International Centre for Science and High Technology.Google Scholar
  71. Verband der deutschen Lack- und Druckfarbenindustrie e.V. (2014). Jahresbericht 2012/2013 (p. 34 ff). Frankfurt am Main: Verband der deutschen Lack- und Farbenindustrie e.V.Google Scholar
  72. Wagner, D. L. (2012). Moth decline in the Northeastern United States. News of the Lepidopterists’ Society, 42(2), 52ff.Google Scholar
  73. Werber, N. (2013). Ameisengesellschaften. Eine Faszinationsgeschichte (p. 1 ff). Frankfurt: S. Fischer Verlag.Google Scholar
  74. WHO. (2003). Traditional medicine. Fact sheet No. 134. www.who.int/mediacentre/factsheets/2003/fs134/en/. Accessed August 7, 2015.
  75. WHO. (2013). WHO traditional medicine strategy 2014–2023 (p. 25 ff). Geneva: WHO.Google Scholar
  76. Wilson, E. O. (2013). Die soziale Eroberung der Erde. Eine biologische Geschichte des Menschen (p. 1 ff). Munich: Verlag Beck.Google Scholar
  77. Williams, I. H. (1994). The dependence of crop production within the European Union on pollination by honey bees. Agricultural Zoology Reviews, 6, 229–257.Google Scholar
  78. Wimmer, N., & Zahner, V. (2010). Spechte. Ein Leben in der Vertikalen (p. 22 ff). Karlsruhe: G. Braun Buchverlag.Google Scholar
  79. Witte, G. R. (1997). Der Maulwurf. Talpa europaea. Magdeburg: Westarp-Wissenschaften.Google Scholar
  80. Wissenschaftlicher Beirat der Bundesregierung Deutschlands. (2011). Welt im Wandel, Gesellschaftsvertrag für eine große Transformation (p. 4 f). Berlin.Google Scholar
  81. Yong-Woo, L. (1999). Silk reeling and testing manual. In: FAO Agricultural services bulletin No. 136 (p. 1 ff). Rome: FAO.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.TeufenSwitzerland

Personalised recommendations