Skip to main content

Mineral Processing

  • Chapter
  • First Online:
Mineral Resources

Abstract

The run-of-mine extracted from the ground requires further processing in order to make a marketable product. This preparation is called mineral processing. Thus, ores must go through a number of different operations to obtain the final products: comminution or size reduction, size separation, concentration or beneficiation, and dewatering. This chapter is devoted to explain all the processes and equipment involved in the operations cited above, with special emphasis in flotation method. This is certainly the most important and flexible mineral separation procedure. All the operations are described including up to eight different case studies of processing plants. At the end of the chapter, waste/tailings disposal heading provides a short review of the main methods of tailings disposal. It is essential to take into account the fact that tailings must be disposed of in specially engineered repositories capable of containing the fine-grained and often saturated tailings mass without the risk of geotechnical failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarado S, Alguerno J, Auracher H, Casali A (1998) Energy-exergy optimization of comminution. Energy Oxford 23(2):153–158

    Article  Google Scholar 

  • Aplan FF (2003) Gravity concentration. In: Fuerstenau MC, Han K (eds) Principles of mineral processing. Society for Mining, Metallurgy, and Exploration, Littleton, pp 185–220

    Google Scholar 

  • Arbiter N, Harris CC (1962) Flotation kinetics. In: Fuerstenau DE (ed) Froth Flotation 50th Anniversary Volume. American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, pp 215–246

    Google Scholar 

  • Arvidson BR, Norrgran D (2014) Magnetic separation. In: Anderson CG, Dunne RC, Uhrie JL (eds) Mineral processing and extractive metallurgy—100 years of innovation. Society for Mining, Metallurgy & Exploration, Englewood, pp 223–233

    Google Scholar 

  • Arvidson BR, Wotruba H (2014) Ore sorting. In: Anderson CG, Dunne RC, Uhrie JL (eds) Mineral processing and extractive metallurgy—100 years of innovation. Society for Mining, Metallurgy & Exploration, Englewood, pp 209–211

    Google Scholar 

  • Azizli KM, Yau TC, Birrel J (1995) Technical note design of the Lohan tailings dam, Mamut Copper Mining Sdn. Bhd., Malaysia. Miner Eng 8(6):705–712

    Article  Google Scholar 

  • Ballentine F, Lewellyn MF, Moffatt SA (2011) Red mud flocculants used in the Bayer process. In: Lindsay SJ (ed) Light metals 2011. TMS, Orlando, pp 107–108

    Google Scholar 

  • Bamber AS (2008) Integrated mining, pre-concentration and waste disposal systems for the increased sustainability of hard rock metal mining. Ph.D. thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Barratt D, Sherman M (2002) Factors that influence the selection of communition circuits. In: Mular AL, Halbe DN, Barratt DJ (eds) Mineral processing plant design, practice and control, vol 1. SME, Englewood, pp 539–565

    Google Scholar 

  • Baum W, Lotter NO, Whittaker PJ (2004) Process mineralogy – a new generation for ore characterisation and plant optimisation, 2003 SME Annual Meeting, Feb. Denver, Preprint 04–12

    Google Scholar 

  • Benckert A, Eurenius J (2001) Tailings dam constructions – seminar on safe tailings dam constructions. Swedish Mining Association, Natur Vards Verket, European Commission, Gallivare, pp 30–36

    Google Scholar 

  • Bond FC (1952) The third theory of comminution. Trans AIME/SME 193:484–494

    Google Scholar 

  • Borden RK (2011) Waste disposal and contamination management. In: Darling P (ed) SME mining engineering handbook, 3rd edn. Society for Mining, Metallurgy, and Exploration, Inc, Englewood, pp 1733–1752

    Google Scholar 

  • Bouchard J, Desbiens A, del Villar R, Nunez E (2009) Column flotation simulation and control: an overview. Miner Eng 22:519–529

    Article  Google Scholar 

  • Brown BS (2002) Management of tailings disposal on land. In: Mular AL, Halbe DN, Barratt DJ (eds) Mineral processing plant design, practice and control Proceedings, 1st edn. SME, Englewood, pp 1809–1827

    Google Scholar 

  • Bulatovic SM (2007) Handbook of flotation reagents. Elsevier Science & Technology Books, Amsterdam, 446 p

    Google Scholar 

  • Clark BH (2007) The Derrick stack sizer: Evolutionary advancements in wet screening. In Proceedings of the 39th Canadian Mineral Processors Conference, January 23 to 25th, pp 413–428

    Google Scholar 

  • Collins B, Napier-Munn TJ, Sciarone M (1974) The production, properties and selection of ferrosilicon powders for heavy medium separation. J S Afr Inst Min Metall 75(5):103–119

    Google Scholar 

  • Concha FA (2014) Solid-Liquid separation in the mining industry. Fluid mechanics and its applications, vol. 105. Springer International Publishing, Switzerland, 429 p

    Book  Google Scholar 

  • Connolly J, Dobby G (2009) Benchmarking of flotation plants: a key element of flotation modelling. In: Malhotra D, Taylor PR, Spiller E, LeVier M (eds) Recent advances in mineral processing plant design. SME, Englewood, pp 211–219

    Google Scholar 

  • Coumans C (2002) Submarine tailings disposal – STD toolkit. MiningWatch Canada, Ottawa and Project Underground, Berkeley, 16 p

    Google Scholar 

  • Cox C, Traczyk F (2002) Design features and types of filtration equipment. In: Mular AL, Halbe DN, Barratt DJ (eds) Mineral processing plant design, practice and control Proceedings, 1st edn. SME, Englewood, pp 1342–1357

    Google Scholar 

  • Cutmore NG, Eberhardt JE (2002) The future of ore sorting in sustainable processing. Green Processing 2002: International Conference on the Sustainable Processing of Minerals. Cairns, Australia, pp 287–289

    Google Scholar 

  • Dahlstrom DA (2003) Liquid-Solid separation. In: Fuerstenau MC, Han K (eds) Principles of mineral processing. Society for Mining, Metallurgy, and Exploration, Littleton, pp 307–362

    Google Scholar 

  • Davies MP, Rice S (2001) An alternative to conventional tailings management – “dry stack” filtered tailings. Proceeding of Tailings and Mine Waste ‘01, Balkema, pp 411–420

    Google Scholar 

  • Degner VR, Sabey JB (1988) Wemco/Leeds flotation column develompent. In: Column flotation ‘88, Proceedings of an international symposium on column flotation, phoenix, AZ, January 25–28. SME, Littleton, pp 267–280

    Google Scholar 

  • Drzymala J (2007) Mineral processing – foundations of theory and practice of minerallurgy. Wroclaw University of Technology, 508 p

    Google Scholar 

  • Ellis S, Gao M (2002) The development of ultra-fine grinding at KCGM. In: SME Annual Meeting, Preprint 02–072. SME, Englewood, pp 1–6

    Google Scholar 

  • EPA (1994) Technical report – design and evaluation of tailings dams. U.S. Environmental Protection Agency, Office of Solid Waste, Washington, 63 p

    Google Scholar 

  • Erickson MT (2014) Innovations in comminution equipment: crushers, high pressure grinding rolls, semi-autogenous grinding, ball mills and regrind mills. In: Anderson CJ, Dunne RC, Uhrie JL (eds) Mineral processing and extractive metallurgy : 100 years of innovation. SME, Englewood, pp 65–75

    Google Scholar 

  • European Commission (2009). Reference document on best available techniques for reference document on best available techniques for management of tailings and waste-rock in mining activities, 511 p

    Google Scholar 

  • Flintoff B, Guyot O, McKay J, Vien A (2014) Innovations in comminution instrumentation and control. In: Anderson CJ, Dunne RC, Uhrie JL (eds) Mineral processing and extractive metallurgy: 100 years of innovation. SME, Englewood, pp 91–113

    Google Scholar 

  • Fuerstenau DW (2007) A century of developments in the chemistry of flotation processing. In: Fuerstenau MC, Jameson GJ, Yoon RH (eds) Froth flotation: a century of innovation. SME, Englewood, pp 3–64

    Google Scholar 

  • Fuerstenau MC, Han K (2003) Introduction. In: Fuerstenau MC, Han K (eds) Principles of mineral processing. Society for Mining, Metallurgy, and Exploration, Littleton, pp 1–8

    Google Scholar 

  • Gharehgheshlagh HH (2016) Kinetic grinding test approach to estimate the ball mill work index. Physicochem Probl Miner Process 52(1):342–352

    Google Scholar 

  • Goodbody A (2011) Agents of reagents. Min Mag, Min Chem 2011:61–66

    Google Scholar 

  • Gorain BK (2016) Physical processing: innovations in mineral processing. In: Lakshmanan VL, Roy R, Ramachandran V (eds) Innovative process development in Metallurgical industry – concept to Commission. Springer International Publishing, Switzerland, pp 9–65

    Chapter  Google Scholar 

  • Gover D, Berton A, Norrgran D (2011) Magnetic concentration of Hematite at Wabush Mines—Plant scale application of Rare Earth Permanent Magnetic Separators. SME Annual Meeting , R-H Yoon symposium, Magnetic and Electrostatic separation, Feb 27—Mar 2nd, Denver, CO

    Google Scholar 

  • Gray AH (1997) InLine Pressure Jig—An exciting, low cost technology with significant operational benefits in gravity separation of minerals. In Proceedings of the AusIMM Annual Conference, p 259

    Google Scholar 

  • Gupta A, Yan DS (2006) Mineral processing design and operations. Elsevier, Amsterdam, 718 p

    Google Scholar 

  • Habashi F (2014) History of innovations in extractive metallurgy. In: Anderson CG, Dunne RC, Uhrie JL (eds) Mineral processing and extractive metallurgy—100 years of innovation. SME, Englewood, pp 29–47

    Google Scholar 

  • Haldar SK (2013) Mineral exploration: principles and applications. Elsevier, Amsterdam, 372 p

    Book  Google Scholar 

  • Heiskanen K (1993) Particle Classification. Chapman and Hall, London, 321 p

    Google Scholar 

  • Herbst JA, Harris M (2007) Modeling and simulation of industrial flotation processes. In: Fuerstenau MC, Jameson GJ, Yoon RH (eds) Froth flotation: a century of innovation. SME, Englewood, pp 757–777

    Google Scholar 

  • Herbst JA, Chang Lo Y, Flintoff B (2003) Size reduction and liberation. In: Fuerstenau MC, Han K (eds) Principles of mineral processing. Society for Mining, Metallurgy, and Exploration, Littleton, pp 61–118

    Google Scholar 

  • Hogg R (2003) Particle Characterization. In: Fuerstenau MC, Han K (eds) Principles of mineral processing. Society for Mining, Metallurgy, and Exploration, Littleton, pp 9–60

    Google Scholar 

  • Hoijer J, Grimm R (2011) The black art of filter media, Issue 28, Outotec Australia quarterly E newsletter

    Google Scholar 

  • Honaker R, Dunne EC, Galvin K (2014) Density-based separation innovations in coal and mineral processing application. In: Anderson CJ, Dunne RC, Uhrie JL (eds) Mineral processing and extractive metallurgy: 100 years of innovation. SME, Englewood, pp 243–264

    Google Scholar 

  • ICSG (2015) The World Copper Factbook 2015. International Copper Study Group, Lisbon, 64 p

    Google Scholar 

  • IFC (2007) Environmental, health and safety guidelines for mining. International Finance Corporation, World Bank Group, Washington, DC, 33 p

    Google Scholar 

  • Jakubick AT, McKenna G, Robertson AM (2003) Stabilisation of tailings deposits: international experience. Mining and the Environment III, Sudbury/Ontario, pp 1–9

    Google Scholar 

  • Kanchibotla S (2014) Mine to mill value chain optimization—role of blasting. In: Anderson CJ, Dunne RC, Uhrie JL (eds) Mineral processing and extractive metallurgy: 100 years of innovation. SME, Englewood, pp 51–64

    Google Scholar 

  • Kellerwessel H (1991) Aufbereitung disperser Feststoffe: mineralische Rohstoffe, Sekundärrohstoffe, Abfälle. VDI-Verlag Düsseldorf, S 5: 60–61

    Google Scholar 

  • Kelly EG, Spottiswood DJ (1982) Introduction to mineral processing. Wiley, New York, 491 pp

    Google Scholar 

  • Kick F (1885) Das Gesetz der proportionalen Widerstande und seine anwendung felix. Leipzig, Germany

    Google Scholar 

  • Klimpel RR (1995) The influence of frother structure on industrial coal flotation. In: Kawatra SK (ed) High-efficiency coal preparation. SME, Littleton, pp 141–151

    Google Scholar 

  • Klimpel RR, Isherwood S (1991) Some industrial implications of changing Frother chemical structure. Int J Miner Process 33:369–381

    Article  Google Scholar 

  • Kordosky GA (2002) Copper recovery using leach/solvent extraction/electrowinning technology: forty years of innovation, 2.2 million tonnes of copper annually. J South Afr Inst Min Metall 2002:445–450

    Google Scholar 

  • Lakshmanan VI, Sridhar R, Chen J, Halim MA (2016) Development of mixed-chloride hydrometallurgical processes for the recovery of value metals from various resources. Trans Indian Inst Metals 69(1):39–50

    Article  Google Scholar 

  • Lessard J, deBakker J, McHugh K (2014) Development of ore sorting and its impact on mineral processing economics. Miner Eng 65:88–97

    Article  Google Scholar 

  • Luttrell GH, Honekar RQ, Bethell P, Stanley F (2007) Design of high-efficiency spiral circuits for preparation plants. In: Arnold B, Klima M, Bethell P (eds) Designing the coal preparation plants for the future. SME, Littleton, pp 73–88

    Google Scholar 

  • Lyer PV (2011) Magnetic and electrostatic separation. In: Darling P (ed) SME mining engineering handbook, 3rd edn. Society for Mining, Metallurgy, and Exploration, Inc, Englewood, pp 1533–1546

    Google Scholar 

  • Manouchehri HR (2003) Sorting: possibilities, limitations and future. Proc. of Conference of Mineral Processing, Luleå, pp 1–17

    Google Scholar 

  • Martin TE, Davies MP, Rice S (2002) Stewardship of tailings facilities. Canada, Report commissioned by Mining Minerals and Sustainable Development (MMSD) a project of Institute for Environment and Development (IIED), No. 20, 36 p

    Google Scholar 

  • Meinel A (1998) Classification of fine, medium-sized and coarse particles on shaking screens. Aufbereitungs-Technik/Miner Process 39(7):317–327

    Google Scholar 

  • Metso (2015) Basics in mineral processing. Metso Corporation, Helsinki, 353 p

    Google Scholar 

  • MMSD (2002) Mining for the future appendix A: large volume waste working paper. International Institute for Environment and Development & World Business Council for Sustainable Development, April 2002, No. 31, 55 p

    Google Scholar 

  • Morley C, Staples P (2010) SAG or HPGR?—The current dilemma. In Proceedings of the 42nd Annual Meeting of the Canadian Mineral Processors, CIM, pp 491–508

    Google Scholar 

  • Mosher J (2011) Crushing, milling, and grinding. In: Darling P (ed) SME mining engineering handbook, 3rd edn. Society for Mining, Metallurgy, and Exploration, Inc, Englewood, pp 1461–1480

    Google Scholar 

  • Mouat J (1996) The development of the flotation process: technological change and the genesis of modern mining, 1898–1911. Aust Econ Hist Rev 36(1):3–31

    Google Scholar 

  • Mular AL (2003) Size separation. In: Fuerstenau MC, Han K (eds) Principles of mineral processing. Society for Mining, Metallurgy, and Exploration, Littleton, pp 119–172

    Google Scholar 

  • Murr D, Workman L, Eloranta J, Katsabanis P (2015) Blasting influence in comminution. SAG Conference, Vancouver 2015, 21 pp

    Google Scholar 

  • Ntsele C, Allen J (2012) Technology selection of stirred mills for energy efficiency in primary and regrinding applications for the platinum industry. South Afr Inst Min Metall Platinum 2012:781–808

    Google Scholar 

  • Radziszewski P (2015) Shear based stirred mill power model – an adimensional analysis. Miner Eng 73:16–20

    Article  Google Scholar 

  • Randolph M (2011) Current trends in mining. In: Darling P (ed) SME mining engineering handbook, 3rd edn. Society for Mining, Metallurgy, and Exploration, Inc, Englewood, pp 11–20

    Google Scholar 

  • Rao SR, Leja J (2004) Surface chemistry of froth flotation, 2nd edn. Kluwer Academic Publication, New York

    Book  Google Scholar 

  • Ripley EA, Redmann RE, Maxwell J (1978) The creation and control of residuals – beneficiation. In: Environmental impact of mining in Canada. Centre for Resource Studies, Queen’s University, Kingston, 38 p

    Google Scholar 

  • Ritcey GM (1989) Tailings management: problems and solutions in the mining industry. Elsevier, Amsterdam, 970 p

    Google Scholar 

  • Saeidi N, Noaparast M, Azizi D, Aslani S, Ramadi A (2013) A developed approach based on grinding time to determine ore comminution properties. J Min Environ 4(2):105–112

    Google Scholar 

  • Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Extractive metallurgy of copper, 5th edn. Elsevier, 472 p

    Google Scholar 

  • Shean BJ, Cilliers JJ (2011) A review of froth flotation control. Int J Miner Process 100(3–4):57–71

    Article  Google Scholar 

  • Song S, Lu S, Lopez-Valdivieso A (2002) Magnetic separation of hematite and limonite fines as hydrophobic flocs from iron ores. Miner Eng 15(6):415–422

    Article  Google Scholar 

  • Stevens R (2010) Mineral exploration and mining essentials. Pakawau Geomanagement Inc., Port Coquitlam, 322 p

    Google Scholar 

  • Symonds DF, Malbon S (2002) Sizing and selection of heavy media equipment: design and layout. In: Mular AL, Halbe DN, Barratt DJ (eds) Mineral processing plant design, practice and control proceedings, 1st edn. SME, Englewood, pp 1011–1032

    Google Scholar 

  • Taggart AF (1945) Handbook of mineral dressing. Wiley, New York, 1905 p

    Google Scholar 

  • Valine SB, Wheeler JE, Albuquerque LG (2009) Fine sizing with the Derrick stack sizer screen. In: Malhotra D, Taylor PR, Spiller E, LeVier M (eds) Recent advances in mineral processing plant design. SME, Englewood, pp 433–444

    Google Scholar 

  • Van Zyl D (2014) A perspective of innovations in tailings management. In: Anderson C (ed) Mineral processing and extractive metallurgy: 100 years of innovation. SME, Englewood, pp 629–637

    Google Scholar 

  • Venkatraman P, Knoll FS, Lawver JE (2003) Magnetic and electrostatic separation. In: Fuerstenau MC, Han K (eds) Principles of mineral processing. Society for Mining, Metallurgy, and Exploration, Littleton, pp 221–244

    Google Scholar 

  • Vick SG (1990) Planning, design, and analysis of tailings dams, 2nd edn. BiTech Publishers Ltd., Vancouver, 369 p

    Google Scholar 

  • Von Rittinger PR (1867) Lehrbuch der Aufbereitungskunde. Ernst and Korn, Berlin

    Google Scholar 

  • Waanders FB, Rabatho JP (2005) Recovery of heavy minerals by means of ferrosilicon dense medium separation material. Hyperfine Interact 161(1–4):55–60

    Article  Google Scholar 

  • Wakeman R, Tarleton S (2005) Solid-liquid separation: principles of industrial filtration. Elsevier Ltd, Oxford, 339 p

    Google Scholar 

  • Wills BA, Finch J (2016) Mineral processing technology – an introduction to the practical aspects of ore Treatment and mineral recovery, 8th edn. Elsevier Ltd., 512 p

    Google Scholar 

  • Woollacott LCY, Eric RH (1994) Mineral and metal extraction: an overview. The South African Institute of Mining and Metallurgy, Johannsburgh, 412 pp

    Google Scholar 

  • Wotruba H, Harbeck H (2010) Sensor-based sorting. In: Ullmann’s encyclopedia of industrial chemistry. Verlag GmbH Co. KG, Weinheim

    Google Scholar 

  • Young MF, Barnes KE, Anderson GS, Pease JD (2008) Jameson cell: The “comeback” in base metals applications using improved design and flow-sheet. In Proceedings of the 38th Canadian Mineral Processors Conference, Ottawa, pp 311–332

    Google Scholar 

  • Zanbak C (2012) Heap leaching technique in mining. Euromines – The European Association of Mining Industries, Metal Ores & Industrial Minerals, 33 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bustillo Revuelta, M. (2018). Mineral Processing. In: Mineral Resources. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-58760-8_6

Download citation

Publish with us

Policies and ethics