Formalizing a Fragment of Combinatorics on Words

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10307)

Abstract

We describe an attempt to formalize some tasks in combinatorics on words using the assistance of Prover9, an automated theorem prover for first-order and equational logic.

Keywords

Formalization Periodicity Combinatorics on words Automated theorem proving 

References

  1. 1.
    Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, New York (1973)MATHGoogle Scholar
  2. 2.
    Culik II, K., Karhumäki, J.: On the equality sets for homomorphisms on free monoids with two generators. RAIRO ITA 14(4), 349–369 (1980)Google Scholar
  3. 3.
    Czeizler, E., Holub, Š., Karhumäki, J., Laine, M.: Intricacies of simple word equations: An example. Int. J. Found. Comput. Sci. 18(6), 1167–1175 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16(1), 109–109 (1965)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hadravová, J.: Structure of equality sets. Ph.D. thesis, Charles University (2007)Google Scholar
  6. 6.
    Hales, T.C.: Formal proof. Not. AMS 55(11), 1370–1380 (2008)MathSciNetMATHGoogle Scholar
  7. 7.
    Holub, Š.: Binary equality sets are generated by two words. J. Algebra 259(1), 1–42 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Holub, Š.: A unique structure of two-generated binary equality sets. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 245–257. Springer, Heidelberg (2003). doi:10.1007/3-540-45005-X_21 CrossRefGoogle Scholar
  9. 9.
    Holub, Š., Veroff, R.: Formalizing a fragment of combinatorics on words (web support) (2017). http://www.cs.unm.edu/veroff/CiE2017/
  10. 10.
    Lagarias, J.C.: The Kepler Conjecture: The Hales-Ferguson Proof. Springer, New York (2011)CrossRefMATHGoogle Scholar
  11. 11.
    Levi, F.W.: On semigroups. Bull. Calcutta Math. Soc. 36, 141–146 (1944)MathSciNetMATHGoogle Scholar
  12. 12.
    McCune, W.: Prover9, version 02a (2009). http://www.cs.unm.edu/mccune/prover9/
  13. 13.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New York (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Urban, J., Vyskočil, J.: Theorem proving in large formal mathematics as an emerging AI field. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 240–257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36675-8_13 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of AlgebraCharles UniversityPragueCzech Republic
  2. 2.Computer Science DepartmentUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations