Skip to main content

Strain Gradient Plasticity: Deformation Patterning, Localization, and Fracture

  • Reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

In this chapter, two different strain gradient plasticity models based on non-convex plastic energies are presented and compared through analytical estimates and numerical experiments. The models are formulated in the simple one-dimensional setting, and their ability to reproduce heterogeneous plastic strain processes is analyzed, focusing on strain localization phenomena observed in metallic materials at different length scales. In a geometrically linear context, both models are based on the additive decomposition of the strain into elastic and plastic parts. Moreover, they share the same non-convex plastic energy, and they are both characterized by the same nonlocal plastic energy as well, i.e., a quadratic form of the plastic strain gradient. In the first model, proposed in Yalçinkaya et al. (Int J Solids Struct 49:2625–2636, 2012) and Yalcinkaya (Microstructure evolution in crystal plasticity: strain path effects and dislocation slip patterning. Ph.D. thesis, Eindhoven University of Technology, 2011), the plastic energy is assumed to be conservative, and plastic dissipation is introduced through a viscous term, which makes the formulation rate-dependent. In the second model, developed in Del Piero et al. (J Mech Mater Struct 8(2–4):109–151, 2013), the plastic term is supposed to be totally dissipative. As a result, plastic deformations are not recoverable, and the resulting framework is rate-independent, contrary to the first model. First, the evolution problems resulting from the two theories are analytically solved in a special simplified case, and correlations between the shape of the plastic potential and the modeling predictions are established. Then, the models are numerically implemented by finite elements, and numerical solutions of two different one-dimensional problems, associated with different plastic energies, are determined. In the first problem, a double-well plastic energy is considered, and the evolution of plastic slip patterning observed in crystals at the mesoscale is reproduced. In the second problem, a convex-concave plastic energy is used to simulate the macroscopic response of a tensile steel bar, which experiences the so-called necking process, with plastic strains localization and final coalescing into fracture. Numerical results provided by the two models are analyzed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E.C. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)

    Google Scholar 

  • C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)

    Article  Google Scholar 

  • Z.P. Bazant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)

    Article  Google Scholar 

  • G. Del Piero, A variational approach to fracture and other inelastic phenomena. J. Elast. 112(1), 3–77 (2013)

    Article  MathSciNet  Google Scholar 

  • G. Del Piero, G. Lancioni, R. March, A diffuse cohesive energy approach to fracture and plasticity: the one-dimensional case. J. Mech. Mater. Struct. 8(2–4), 109–151 (2013)

    Article  Google Scholar 

  • P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)

    Article  MathSciNet  Google Scholar 

  • M. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck & Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)

    Article  Google Scholar 

  • M.E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodinamics of Continua (Cambridge University Press, New York, 2010)

    Book  Google Scholar 

  • D. Hull, Orientation and temperature dependence of plastic deformation processes in 3⋅25 percent silicon iron. Proc. R. Soc. A 274, 5–24 (1963)

    Google Scholar 

  • M. Jirásek, S. Rolshoven, Localization properties of strain-softening gradient plasticity models. Part II. Theories with gradients of internal variables. Int. J. Solids Struct. 46, 2239–2254 (2009)

    MATH  Google Scholar 

  • B. Klusemann, T. Yalçinkaya, Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex Helmholtz energy. Int. J. Plast. 48, 168–188 (2013)

    Article  Google Scholar 

  • B. Klusemann, T. Yalçinkaya, M.G.D. Geers, B. Svendsen, Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Comput. Mater. Sci. 80, 51–60 (2013)

    Article  Google Scholar 

  • G. Lancioni, Modeling the response of tensile steel bars by means of incremental energy minimization. J. Elast. 121, 25–54 (2015)

    Article  MathSciNet  Google Scholar 

  • G. Lancioni, T. Yalcinkaya, A. Cocks, Energy based non-local plasticity models for deformation patterning, localization and fracture. Proc. R. Soc. A 471, 20150275:1–20150275:23 (2015a)

    Article  Google Scholar 

  • G. Lancioni, G. Zitti, T. Yalcinkaya, Rate-independent deformation patterning in crystal plasticity. Key Eng. Mater. 651–653, 944–949 (2015b)

    Article  Google Scholar 

  • A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in Multifield Problems in Solid and Fluid Mechanics, ed. by R. Helmig, A. Mielke, B. Wohlmuth. Lecture Notes in Applied and Computational Mechanics, vol. 28 (Springer, Berlin/Heidelberg, 2006), pp. 399–428

    Google Scholar 

  • T. Yalçinkaya, Microstructure evolution in crystal plasticity: strain path effects and dislocation slip patterning. Ph.D. thesis, Eindhoven University of Technology (2011)

    Google Scholar 

  • T. Yalçinkaya, G. Lancioni, Energy-based modeling of localization and necking in plasticity. Procedia Mater. Sci. 3, 1618–1625 (2014)

    Article  Google Scholar 

  • T. Yalçinkaya, W.A.M. Brekelmans, M.G.D. Geers, Deformation patterning driven by rate dependent nonconvex strain gradient plasticity. J. Mech. Phys. Solids 59, 1–17 (2011)

    Article  MathSciNet  Google Scholar 

  • T. Yalçinkaya, W.A.M. Brekelmans, M.G.D. Geers, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int. J. Solids Struct. 49, 2625–2636 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Lancioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lancioni, G., Yalçinkaya, T. (2019). Strain Gradient Plasticity: Deformation Patterning, Localization, and Fracture. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_43

Download citation

Publish with us

Policies and ethics