Advertisement

Information Decomposition: A Tool to Dissect Cardiovascular and Cardiorespiratory Complexity

  • Luca FaesEmail author
  • Giandomenico Nollo
  • Alberto Porta
Chapter

Abstract

This chapter reports some recent developments of information-theoretic concepts applied to the description of coupled dynamical systems, which allow to decompose the entropy of an assigned target system into components reflecting the information stored in the system and the information transferred to it from the other systems, as well as the nature (synergistic or redundant) of the information transferred to the target. The decomposition leads to well-defined measures of information dynamics which in the chapter will be defined theoretically, computed in simulations of linear Gaussian systems and implemented in practice through the application to heart period, arterial pressure and respiratory time series. The application leads to decompose the information carried by heart rate variability into amounts reflecting cardiac dynamics, vascular and respiratory effects on these dynamics, as well as the interaction between cardiovascular and cardiorespiratory effects. The analysis of head-up and head-down tilt test protocols demonstrates the relevance of information decomposition in dissecting cardiovascular control mechanisms and accept or reject physiological hypotheses about their activity.

References

  1. 1.
    Malliani, A.: Principles of cardiovascular neural regulation in health and disease. Kluwer academic publishers, Norwell, MA, USA (2000)CrossRefGoogle Scholar
  2. 2.
    Cohen, M.A., Taylor, J.A.: Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J. Physiol. 542, 669–683 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Eckberg, D.L.: Point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J. Appl. Physiol. 106, 1740–1742 (2009)CrossRefPubMedGoogle Scholar
  4. 4.
    Koepchen, H.P.: History of studies and concepts of blood pressure waves. In: Miyakawa, K., Polosa, C., Koepchen, H.P. (eds.) Mechanisms of blood pressure waves. Springer, Berlin (1984)Google Scholar
  5. 5.
    Faes, L., Porta, A.: Conditional entropy-based evaluation of information dynamics in physiological systems. In: Vicente, R., Wibral, M., Lizier, J.T. (eds.) Directed Information Measures in Neuroscience. Springer-Verlag, Berlin (2014)Google Scholar
  6. 6.
    Wibral, M., Lizier, J.T., Priesemann, V.: Bits from biology for biologically-inspired computing. Front. Robot. AI 2. 5 (2015). doi: 10.3389/frobt.2015.00005
  7. 7.
    Faes, L., Kugiumtzis, D., Nollo, G., Jurysta, F., Marinazzo, D.: Estimating the decomposition of predictive information in multivariate systems. Phys. Rev. E. 91, 032904 (2015)CrossRefGoogle Scholar
  8. 8.
    Faes, L., Porta, A., Nollo, G.: Information decomposition in bivariate systems: theory and application to cardiorespiratory dynamics. Entropy. 17, 277–303 (2015)CrossRefGoogle Scholar
  9. 9.
    Porta, A., Faes, L., Nollo, G., Bari, V., Marchi, A., De Maria, B., Takahashi, A.C.M., Catai, A.M.: Conditional self-entropy and conditional joint transfer entropy in heart period variability during graded postural challenge. PLoS One. 10, e0132851 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Porta, A., Faes, L., Marchi, A., Bari, V., De Maria, B., Guzzetti, S., Colombo, R., Raimondi, F.: Disentangling cardiovascular control mechanisms during head-down tilt via joint transfer entropy and self-entropy decompositions. Front. Physiol. 6, 301 (2015)PubMedPubMedCentralGoogle Scholar
  11. 11.
    Triedman, J.K., Perrott, M.H., Cohen, R.J., Saul, J.P.: Respiratory sinus arrhythmia-time-domain characterization using autoregressive moving average analysis. Am. J. Physiol. Heart Circ. Physiol. 268, H2232–H2238 (1995)Google Scholar
  12. 12.
    Baselli, G., Cerutti, S., Civardi, S., Malliani, A., Pagani, M.: Cardiovascular variability signals: towards the identification of a closed-loop model of the neural control mechanisms. I.E.E.E. Trans. Biomed. Eng. 35, 1033–1046 (1988)CrossRefGoogle Scholar
  13. 13.
    Porta, A., De Maria, B., Bari, V., Marchi, A., Faes, L.: Are nonlinear model-free approaches for the assessment of the entropy-based complexity of the cardiac control superior to a linear model-based one? IEEE Trans. Biomed. Eng. 64(6), 1287–1296 (2017). doi: 10.1109/TBME.2016.2600160 CrossRefPubMedGoogle Scholar
  14. 14.
    Faes, L., Porta, A., Nollo, G., Javorka, M.: Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks, Entropy, special issue on Multivariate entropy measures and their applications, 19(1), 5 (2017). doi:  10.3390/e19010005.
  15. 15.
    Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley, New York (2006)Google Scholar
  16. 16.
    Barnett, L., Barrett, A.B., Seth, A.K.: Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 103, 238701 (2009)CrossRefPubMedGoogle Scholar
  17. 17.
    Montano, N., Gnecchi Ruscone, T., Porta, A., Lombardi, F., Pagani, M., Malliani, A.: Power spectrum analysis of heart rate variability to assess the change in sympathovagal balance during graded orthostatic tilt. Circulation. 90, 1826–1831 (1994)CrossRefPubMedGoogle Scholar
  18. 18.
    Nagaya, K., Wada, F., Nakamitsu, S., Sagawa, S., Shiraki, K.: Responses of the circulatory-system and muscle sympathetic-nerve activity to head-down tilt in humans. Am. J. Phys. Regul. Integr. Comp. Phys. 268, R1289–R1294 (1995)Google Scholar
  19. 19.
    Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability. Eur. Heart J. 17, 354–381 (1996)Google Scholar
  20. 20.
    Magagnin, V., Bassani, T., Bari, V., Turiel, M., Maestri, R., Pinna, G.D., Porta, A.: Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiol. Meas. 32, 1775–1786 (2011)CrossRefPubMedGoogle Scholar
  21. 21.
    Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974)CrossRefGoogle Scholar
  22. 22.
    Porta, A., Gnecchi-Ruscone, T., Tobaldini, E., Guzzetti, S., Furlan, R., Montano, N.: Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J. Appl. Physiol. 103, 1143–1149 (2007)CrossRefPubMedGoogle Scholar
  23. 23.
    Taylor, J.A., Eckberg, D.L.: Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation. 93, 1527–1532 (1996)CrossRefPubMedGoogle Scholar
  24. 24.
    Cooke, W.H., Hoag, J.B., Crossman, A.A., Kuusela, T.A., Tahvanainen, K.U.O., Eckberg, D.L.: Human response to upright tilt: a window on central autonomic integration. J. Physiol. 517, 617–628 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    London, G.M., Levenson, J.A., Safar, M.E., Simon, A.C., Guerin, A.P., Payen, D.: Hemodynamic-effects of head-down tilt in normal subjects and sustained hypertensive patients. Am. J. Phys. 245, H194–H202 (1983)Google Scholar
  26. 26.
    Dick, T.E., Baekey, D.M., Paton, J.F.R., Lindsey, B.G., Morris, K.F.: Cardio-respiratory coupling depends on the pons. Respir. Physiol. Neurobiol. 168, 76–85 (2009)CrossRefPubMedGoogle Scholar
  27. 27.
    Porta, A., Bassani, T., Bari, V., Tobaldini, E., Takahashi, A.C.M., Catai, A.M., Montano, N.: Model-based assessment of baroreflex and cardiopulmonary couplings during graded head-up tilt. Comput. Biol. Med. 42, 298–305 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    Faes, L., Nollo, G., Porta, A.: Information domain approach to the investigation of cardio-vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings. Front. Physiol. 2, 1–13 (2011)CrossRefGoogle Scholar
  29. 29.
    De Boer, R.W., Karemaker, J.M., Strackee, J.: Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am. J. Phys. 253, H680–H689 (1987)Google Scholar
  30. 30.
    Barrett, A.B.: Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E. 91, 052802 (2015)CrossRefGoogle Scholar
  31. 31.
    Voss, A., Schroeder, R., Heitmann, A., Peters, A., Perz, S.: Short-term heart rate variability-influence of gender and age in healthy subjects. PLoS One. 10, e0118308 (2015)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luca Faes
    • 1
    • 2
    Email author
  • Giandomenico Nollo
    • 1
    • 2
  • Alberto Porta
    • 3
    • 4
  1. 1.Bruno Kessler FoundationTrentoItaly
  2. 2.BIOtech, Department of Industrial EngineeringUniversity of TrentoTrentoItaly
  3. 3.Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
  4. 4.Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly

Personalised recommendations