Emergence in Game Design: Theoretical Aspects and Project’s Potentialities

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10291)


Games are propitious environments for the appearing of new behavior patterns (emergence). It’s necessary to comprehend the nature of these changes taking into account demands and their modifying potential on this process. To support this trajectory, concepts of emergence were presented back from classical sciences to contemporary studies which touch metadesign and game design. This paper aims to investigate the phenomenon of emergence in digital games, encompassing the utilization of projective resources that can increase the interactivity and trigger this process. The research involves literature review, articulation of concepts of complex adaptive system (CAS), emergence incidence in game design and the analysis of three selected objects: Tibia, PokemonGO and The Sims. The perspectives of metadesign usage and artificial intelligence are highlighted as propeller resources of new behaviors. The context, phenomenon and tool relation is discussed concerning: adaptive complex systems, emergence and artificial intelligence. This paper concludes that the usage of methodologies which incorporate metadesign and the gamer as co-designer are more appropriate when dealing with the emergent character of games. Furthermore, the use of artificial intelligences expands the possibilities of interaction in the game, multiplying the amount of active agents in the system.


Game design Emergence New behavior Adaptive complex system Metadesign Artificial intelligence 


  1. 1.
    Bunge, M.: Emergencia y convergencia. Gedisa Editorial, Barcelona (2004)CrossRefGoogle Scholar
  2. 2.
    Newzoo: Annual Global Games Market Report. NewZoo (2015)Google Scholar
  3. 3.
    Zuanon, R.: Game design and neuroscience cooperation in the challenge-based immersion in mobile devices as tablets and smartphones. In: Streitz, N., Markopoulos, P. (eds.) DAPI 2016. LNCS, vol. 9749, pp. 142–153. Springer, Cham (2016). doi: 10.1007/978-3-319-39862-4_14 CrossRefGoogle Scholar
  4. 4.
    Zuanon, R.: Design-neuroscience: interactions between the creative and cognitive processes of the brain and design. In: Kurosu, M. (ed.) HCI 2014. LNCS, vol. 8510, pp. 167–174. Springer, Cham (2014). doi: 10.1007/978-3-319-07233-3_16 CrossRefGoogle Scholar
  5. 5.
    Zuanon, R.: Designing wearable bio-interfaces: a transdisciplinary articulation between design and neuroscience. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2013. LNCS, vol. 8009, pp. 689–699. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39188-0_74 CrossRefGoogle Scholar
  6. 6.
    Zuanon, R.: Usign BCI to play games with brain signals: an organic interaction process through NeuroBodyGame wearable computer. In: Huggins, J.E., et al. (eds.) Fifth International Brain-Computer Interface Meeting 2013, pp. 64–65. Graz University of Technology Publishing House, Graz (2013)Google Scholar
  7. 7.
    Zuanon, R.: Bio-interfaces: designing wearable devices to organic interactions. In: Ursyn, A. (ed.) Biologically-Inspired Computing for the Arts: Scientific Data Through Graphics, pp. 1–17. IGI Global, Hershey (2011)Google Scholar
  8. 8.
    Holland, J.: Hidden Order: How Adaptation Builds Complexity. Basic Books, New York (1995)Google Scholar
  9. 9.
    Sweetser, P.: Emergence in Games. Thomson, Boston (2007)Google Scholar
  10. 10.
    Salen, K., Zimmerman, E.: Regras do jogo: fundamentos do design de jogos, vol. 1. Blucher, São Paulo (2012)Google Scholar
  11. 11.
    Schell, J.A.: Arte de Game Design: o Livro Original. Elsevier, Rio de Janeiro (2011)Google Scholar
  12. 12.
    Vassão, C.: Metadesign: ferramentas, estratégias e ética para a complexidade. Blucher, São Paulo (2010)Google Scholar
  13. 13.
    Baranauskas, M.C., Martins, M.C., Valente, J.A.: Codesign de Redes Digitais: Tecnologia e Educação a Serviço da Inclusão Social. Penso, Porto Alegre (2013)Google Scholar
  14. 14.
    Russel, S., Norvig, P.; Inteligência artificial, 3a edn. Campus, Rio de Janeiro (2013)Google Scholar
  15. 15.
    Champandard, A.J.: AI Game Development: Synthetic Creatures with Learning and Reactive Behaviors. New Riders, London (2013)Google Scholar
  16. 16.
    CipSoft: Game Tibia (1997)Google Scholar
  17. 17.
    Niantic: Game PokemonGo (2016)Google Scholar
  18. 18.
    Eletronic Arts: Game The Sims (2000)Google Scholar
  19. 19.
    Bertalanffy, L.V.: Teoria Geral dos Sistemas. Ed. Vozes, São Paulo (2009)Google Scholar
  20. 20.
    Vieira, J.A.: Organização e sistemas. Informática na educação: Teoria e prática 3(1) (2000)Google Scholar
  21. 21.
    Uyemov, A.: Problem of direction of time and the laws of system’s development. In: Kubat, L., Zeman, J. (eds.) Entropy and Information in Science and Philosophy, pp. 93–102. Elsevier Scient., Praga (1975)Google Scholar
  22. 22.
    Vassão, C.: Arquitetura livre: Complexidade, Metadesign e Ciência Nômade. Tese de Doutorado. Tese (doutorado em Arquitetura) Universidade de São Paulo (2008)Google Scholar
  23. 23.
    Cardoso, R.: Design para um mundo complexo. Ubu Editora LTDA-ME (2016)Google Scholar
  24. 24.
    Fullerton, T.: Game Design Workshop: A Playcentric Approach to Creating Innovative Games. Paperback, New York (2008)CrossRefGoogle Scholar
  25. 25.
    Juul, J.: Half-Real: Video Games Between Real Rules and Fictional Worlds. MIT Press, Cambridge (2005)Google Scholar
  26. 26.
    Piccini, M.: O papel do jogador na construção de sentido em narrativas de jogos digitais: o jogo como forma de expressão do jogador. In SBC - Proceedings of SBGames (2012)Google Scholar
  27. 27.
    Flusser, V.: O mundo codificado: por uma filosofia do design e da comunicação. Cosac Naify, São Paulo (2007)Google Scholar
  28. 28.
    Lucena, M.C.: O Espaço Público e Pokémon Go: um diálogo entre o real e o virtual. Revista Científica ANAP Brasil 9(15) (2016)Google Scholar
  29. 29.
    Ferreira, A., Demutti, C.M., Gimenez, P.E.: A teoria das necessidades de Maslow: a influência do nível educacional sobre a sua percepção no ambiente de trabalho. XIII SEMEAD–Seminários em Administração (2010). ISNN: 2177-3866Google Scholar
  30. 30.
    Champion, E.: Game Mods: Theory and Criticism., Morrisville (2013)Google Scholar
  31. 31.
    Hunicke, R., Leblanc, M., Zubek, R.: MDA: a formal approach to game design and game research. In: Proceedings of the AAAI Workshop on Challenges in Game AI (2004)Google Scholar
  32. 32.
    Fischer, G., Giaccardi, E.: Meta-design: a framework for the future of end-user development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End user development. Human-Computer Interaction Series, vol. 9, pp. 427–457. Springer, Dordrecht (2006). doi: 10.1007/1-4020-5386-X_19
  33. 33.
    Chen, J.: Flow in Games – MFA Thesis. University of Southern California (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Anhembi Morumbi UniversitySão PauloBrazil

Personalised recommendations