Wearable AR Platform for K-Culture Time Machine

  • Eunseok Kim
  • Jungi Kim
  • Kihong Kim
  • Seungmo Hong
  • Jongwon Lee
  • Noh-young Park
  • Hyerim Park
  • Hayun Kim
  • Jungwha Kim
  • Woontack WooEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10291)


AR technology has been rapidly accepted in the cultural heritage domain, which requires wide context information for complete understanding as providing an enhanced experience to the user with related information of the physical world. However, currently, there are several limitations for seamless AR such as applications in outdoor environments and wearable platforms. To address this issue, we introduce our AR platform in this paper that supports the outdoor AR and wearable platform. Through the standardized metadata schema-based data retrieval, time-space correlated AR content containing the assorted context information can be provided to users. In addition, vision- and sensor-based spatial data composition technology supports stable 3D outdoor tracking. Finally, an immersive visualization provisioning module, which integrates the aforementioned component, provides a 360-degree panorama virtual reality for wearable platforms and the outdoor AR in mobile platforms. Using this platform, we expect a seamless context-aware AR service in the cultural heritage domain.


Augmented reality Wearable AR 3D outdoor tracking 360-degree panorama VR Cultural heritage domain 



This research is supported by Ministry of Culture, Sports and Tourism(MCST) and Korea Creative contents Agency(KOCCA) in the Culture Technology(CT) Research & Development Program 2014.


  1. 1.
    Damala, A., Marchal, I., Houlier, P.: Merging augmented reality based features in mobile multimedia museum guides. In: Anticipating the Future of the Cultural Past, CIPA Conference 2007, 1–6 October 2007 (2007)Google Scholar
  2. 2.
    Patel, M., White, M., Mourkoussis, N., Walczak, K., Wojciechowski, R., Chmielewski, J.: Metadata requirements for digital museum environments. Int. J. Digit. Libr. 5(3), 179–192 (2005)CrossRefGoogle Scholar
  3. 3.
    Damala, A., Stojanovic, N., Schuchert, T., Moragues, J., Cabrera, A., Gilleade, K.: Adaptive augmented reality for cultural heritage: ARtSENSE project. In: Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., Caffo, R. (eds.) EuroMed 2012. LNCS, vol. 7616, pp. 746–755. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34234-9_79 CrossRefGoogle Scholar
  4. 4.
    Pujol, L., et al. Personalizing interactive digital storytelling in archaeological museums: the CHESS project. In: 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology. Amsterdam University Press (2012)Google Scholar
  5. 5.
    Vlahakis, V., et al.: Archeoguide: first results of an augmented reality, mobile computing system in cultural heritage sites. Virtual Reality, Archeology, and Cultural Heritage (2001)Google Scholar
  6. 6.
    Marimon, D., et al.: MobiAR: tourist experiences through mobile augmented reality. Telefonica Research and Development, Barcelona, Spain (2010)Google Scholar
  7. 7.
    Caggianese, G., Neroni, P., Gallo, L.: Natural interaction and wearable augmented reality for the enjoyment of the cultural heritage in outdoor conditions. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2014. LNCS, vol. 8853, pp. 267–282. Springer, Cham (2014). doi: 10.1007/978-3-319-13969-2_20 CrossRefGoogle Scholar
  8. 8.
    Barile, F., et al.: ICT solutions for the OR. C. HE. STRA project: from personalized selection to enhanced fruition of cultural heritage data. In: 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems (SITIS). IEEE (2014)Google Scholar
  9. 9.
    Ha, T., Kim, Y., Kim, E., Kim, K., Lim, S., Hong, S., Kim, J., Kim, S., Kim, J., Woo, W.: K-culture time machine: development of creation and provision technology for time-space-connected cultural contents. In: Yamamoto, S. (ed.) HCI 2015. LNCS, vol. 9173, pp. 428–435. Springer, Cham (2015). doi: 10.1007/978-3-319-20618-9_43 CrossRefGoogle Scholar
  10. 10.
    Kim, E., Jo, J., Kim, K., Kim, S., Hong, S., Kim, J.-I., Park, N.-y., Park, H., Matuszka, T., Kim, J., Woo, W.: AR reference model for K-Culture time machine. In: Yamamoto, S. (ed.) HIMI 2016. LNCS, vol. 9735, pp. 278–289. Springer, Cham (2016). doi: 10.1007/978-3-319-40397-7_27 CrossRefGoogle Scholar
  11. 11.
    Telecommunications Technology Association (TTA), Context-based Metadata Model for Cultural Heritage Data Aggregation, Korea, TTAK.KO-10.0850Google Scholar
  12. 12.
    Telecommunications Technology Association (TTA), Metadata Schema for Visualization and Sharing of the Augmented Reality Contents, Korea, TTAK.KO-10.0851Google Scholar
  13. 13.
    Kim, H., Matuszka T., Kim, J.I., Kim, J., Woo, W.: An ontology-based augmented reality application exploring contextual data of cultural heritage sites. In: 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems, pp. 468–475. IEEE (2016)Google Scholar
  14. 14.
    dotNetRDF, An Open Source.NET Library for RDF.
  15. 15.
    Heery, R., Patel, M.: Application profiles: mixing and matching metadata schemas. Ariadne 25 (2000)Google Scholar
  16. 16.
    Duval, E., Hodgins, W., Sutton, S., Weibel, S.L.: Metadata principles and practicalities. D-lib Mag. 8(4), 16 (2002)Google Scholar
  17. 17.
    Lee, W., et al.: Ontology for media resources 1.0. W3C recommendation 9 (2012)Google Scholar
  18. 18.
    Kim, E., Kim, J., Woo, W.: Metadata schema for context-aware augmented reality application in cultural heritage domain. In: Digital Heritage 2015 proceedings (2015)Google Scholar
  19. 19.
    Hyun, B.J.D.: Metadata element and format for broadcast content distribution (2014)
  20. 20.
    Hunter, J., Armstrong, L.: A comparison of schemas for video metadata representation. Comput. Netw. 31(11), 1431–1451 (1999)CrossRefGoogle Scholar
  21. 21.
    Noh-young, P., et al.: All-in-one mobile outdoor augmented reality framework for cultural heritage sites. In: 2016 International Workshop on Visions on Internet of Cultural Things and Applications. IEEE (2016)Google Scholar
  22. 22.
    Rublee, E., et al.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Eunseok Kim
    • 1
  • Jungi Kim
    • 1
  • Kihong Kim
    • 1
  • Seungmo Hong
    • 2
  • Jongwon Lee
    • 3
  • Noh-young Park
    • 4
  • Hyerim Park
    • 4
  • Hayun Kim
    • 4
  • Jungwha Kim
    • 4
  • Woontack Woo
    • 4
    Email author
  1. 1.Augmeted Reality Research Institute KAISTDeajeonKorea
  2. 2.Postmedia CorporationSeoulKorea
  3. 3.Department of Computer EngineeringChungnam National UniversityDaejeonSouth Korea
  4. 4.UVR Lab KAISTDeajeonKorea

Personalised recommendations