Skip to main content

Recent Process in Probabilistic Tsunami Hazard Analysis (PTHA) for Mega Thrust Subduction Earthquakes

Part of the Advances in Natural and Technological Hazards Research book series (NTHR,volume 47)

Abstract

A review of the progress of Probabilistic Tsunami Hazard Analysis (PTHA) for mega thrust subduction earthquakes after the 2004 Indian Ocean tsunami is presented. PTHA is used to quantify the tsunami inundation characteristics probabilistically, analogous to Probabilistic Seismic Hazard Analysis (PSHA) popularized since the early 1970s. The process of PTHA is briefly presented from frequency-intensity modeling, geometric fault parameter modeling, and synthetic slip distribution modeling. There are mainly three different approaches, i.e. historical records, a logic tree and random phase, to generate different slip distributions in PTHA. PTHA is useful for risk assessment, when combined with fragility models for probabilistic damage assessment. Moreover, PTHA provides a consistent framework that allows it to be integrated with probabilistic seismic hazard analysis (PSHA) for multi-hazard damage assessment.

Keywords

  • Tsunami hazard assessment
  • Synthetic tsunami modeling
  • Probabilistic modeling
  • Inundation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-58691-5_27
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-58691-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 27.1
Fig. 27.2
Fig. 27.3
Fig. 27.4
Fig. 27.5
Fig. 27.6
Fig. 27.7

References

  • Anita G, Sandri L, Marzocchi W, Argnani A, Gasparini P, Selva J (2012) Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily, Italy). Nat Hazards 64:329–358

    CrossRef  Google Scholar 

  • Anita G, Tonini R, Sandri L, Pierdominici S, Selva J (2015) A methodology for a comprehensive probabilistic tsunami hazard assessment: multiple sources and short-term interactions. J Mar Sci Eng 3(1):23–51

    CrossRef  Google Scholar 

  • Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. In: Tsunami and its hazards in the Indian and Pacific Oceans. Birkhäuser Basel, pp 577–592

    Google Scholar 

  • Blaser L, Krüger F, Ohrnberger M, Scherbaum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100(6):2914–2926

    CrossRef  Google Scholar 

  • Burbidge D, Cummins P R, Mleczko R, Thio HK (2008) A probabilistic tsunami hazard assessment for Western Australia. In: Tsunami science four years after the 2004 Indian Ocean Tsunami, Birkhäuser Basel, pp 2059–2088

    Google Scholar 

  • Burbidge D, Mueller C, Power W (2015) The effect of uncertainty in earthquake fault parameters on the maximum wave height from a tsunami propagation model. Nat Hazards Earth Syst Sci 15(10):2299

    Google Scholar 

  • Burroughs SM, Tebbens SF (2005) Power-law scaling and probabilistic forecasting of tsunami runup height. Pure Appl Geophys 162:331–342

    CrossRef  Google Scholar 

  • Chock GY (2016) Design for tsunami loads and effects in the ASCE 7-16 standard. J Struct Eng, 04016093

    Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  • Davies G, Horspool N, Miller V (2015) Tsunami inundation from heterogeneous earthquake slip distributions: evaluation of synthetic source models. J Geophys Res Solid Earth 120(9):6431–6451

    CrossRef  Google Scholar 

  • De Risi R, Goda K (2016) Probabilistic earthquake-tsunami multi-hazard analysis: application to the Tohoku region, Japan. Front Built Environ, 2(25). Doi:10.3389/fbuil.2016.00025

  • Fukutani Y, Suppasri A, Imamura F (2015) Stochastic analysis and uncertainty assessment of tsunami wave height using a random source parameter model that targets a Tohoku-type earthquake fault. Stoch Env Res Risk A 29(7):1763–1779

    CrossRef  Google Scholar 

  • Geist EL (2002) Complex earthquake rupture and local tsunamis. J Geophys Res Solid Earth 107(B5)

    Google Scholar 

  • Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314

    CrossRef  Google Scholar 

  • Grezio A, Marzocchi W, Sandri L, Gasparini P (2010) A Bayesian procedure for probabilistic tsunami hazard assessment. Nat Hazards 53(1):159–174

    CrossRef  Google Scholar 

  • Goda K, Mai PM, Yasuda T, Mori N (2014) Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planets Space 66(1):1–20

    CrossRef  Google Scholar 

  • Goda K, Song J (2016) Uncertainty modeling and visualization for tsunami hazard and risk mapping: a case study for the 2011 Tohoku earthquake. Stoch Env Res Risk A 30(8):2271–2285

    Google Scholar 

  • Goda K, Yasuda T, Mori N, Mai PM (2015) Variability of tsunami inundation footprints considering stochastic scenarios based on a single rupture model: application to the 2011 Tohoku earthquake. J Geophys Res Oceans 120(6):4552–4575

    CrossRef  Google Scholar 

  • Goda K, Yasuda T, Mori N, Maruyama T (2016) New scaling relationships of earthquake source parameters for stochastic tsunami simulation. Coast Eng J 58(3):1650010. doi:10.1142/S0578563416500108

    CrossRef  Google Scholar 

  • González FI, Geist EL, Jaffe B, Kânoğlu U, Mofjeld H, Synolakis C E, Horning T (2009) Probabilistic tsunami hazard assessment at seaside, Oregon, for near-and far-field seismic sources. J Geophys Res: Oceans, 114(C11)

    Google Scholar 

  • Grilli ST, Taylor ODS, Baxter CD, Maretzki S (2009) A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Mar Geol 264(1):74–97

    CrossRef  Google Scholar 

  • Heidarzadeh M, Kijko A (2011) A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Nat Hazards 56(3):577–593. doi:10.1007/s11069-010-9574-x

    CrossRef  Google Scholar 

  • Horspool N, Pranantyo I, Griffin J, Latief H, Natawidjaja DH, Kongko W, Cipta A, Bustaman B, Anugrah SD, Thio HK (2014) A probabilistic tsunami hazard assessment for Indonesia. Nat Hazards Earth Syst Sci 14(11):3105–3122

    CrossRef  Google Scholar 

  • Kagan Y, Jackson DD (2013) Tohoku earthquake: a surprise? Bull Seismol Soc Am 103:1181–1194

    CrossRef  Google Scholar 

  • Leonard M (2010) Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100(5A):1971–1988

    CrossRef  Google Scholar 

  • Leonard LJ, Rogers GC, Mazzotti S (2014) Tsunami hazard assessment of Canada. Nat Hazards 70(1):237–274

    CrossRef  Google Scholar 

  • Li H, Yuan Y, Xu Z, Wang Z, Wang J, Wang P, Gao Y, Hou J, Shan D (2016) The dependency of probabilistic tsunami hazard assessment on magnitude limits of seismic sources in the South China Sea and adjoining basins. Pur Appl Geophys, 1–20

    Google Scholar 

  • Liu Y, Santos A, Wang SM, Shi Y, Liu H, Yuen DA (2007) Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Phys Earth Planet Inter 163(1):233–244

    CrossRef  Google Scholar 

  • Lorito S, Selva J, Basili R, Romano F, Tiberti MM, Piatanesi A (2015) Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophys J Int 200(1):574–588

    CrossRef  Google Scholar 

  • Løvholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P et al (2012) Tsunami hazard and exposure on the global scale. Earth Sci Rev 110(1):58–73

    Google Scholar 

  • Mai PM, Beroza GC (2000) Source scaling properties from finite-fault-rupture models. Bull Seismol Soc Am 90(3):604–615

    CrossRef  Google Scholar 

  • Mai PM, Thingbaijam KKS (2014) SRCMOD: an online database of finite-fault rupture models. Seismol Res Lett 85(6):1348–1357

    CrossRef  Google Scholar 

  • McCloskey J, Antonioli A, Piatanesi A, Sieh K, Steacy S, Nalbant S, Dunlop P (2008) Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra. Earth Planet Sci Lett 265(1):61–81

    CrossRef  Google Scholar 

  • McGuire RK (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct Dyn 37(3):329–338

    CrossRef  Google Scholar 

  • Mori N, Takahashi K (2012) Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coast Eng J 54(01):1250001

    Google Scholar 

  • Mori N, T, Yasuda T, Yanagisawa H (2011) Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys Res Lett, 38(7). Doi:10.1029/2011GL049210

  • Mori N, Cox DT, Yasuda T, Mase H (2013) Overview of the 2011 Tohoku earthquake tsunami damage and its relation to coastal protection along the Sanriku Coast. Earthquake Spectra 29(S1):S127–S143

    CrossRef  Google Scholar 

  • Mori N, Mai PM, Goda K, Yasuda T (2016) Tsunami inundation variability from stochastic rupture scenarios: application to the 2011 Tohoku, Japan earthquake multiple inversions. Submitted to Coastal Engineering

    Google Scholar 

  • Mueller C, Power W, Fraser S, Wang X (2015) Effects of rupture complexity on local tsunami inundation: Implications for probabilistic tsunami hazard assessment by example. J Geophys Res Solid Earth 120(1):488–502

    Google Scholar 

  • Murotani S, Satake K, Fujii Y (2013) Scaling relations of seismic moment, rupture area, average slip, and asperity size for M9 subduction-zone earthquakes. Geophys Res Lett 40(19):5070–5074

    CrossRef  Google Scholar 

  • Orfanogiannaki K, Papadopoulos GA (2007) Conditional probability approach of the assessment of tsunami potential: application in three tsunamigenic regions of the Pacific Ocean. Pure Appl Geophys 164(2–3):593–603

    CrossRef  Google Scholar 

  • Papazachos BC, Scordilis EM, Panagiotopoulos DG, Papazachos CB, Karakaisis GF (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. Bull Geol Soc Greece 36:1482–1489

    Google Scholar 

  • Park H, Cox DT (2016) Probabilistic assessment of near-field tsunami hazards: inundation depth, velocity, momentum flux, arrival time, and duration applied to Seaside, Oregon. Coast Eng 117:79–96

    CrossRef  Google Scholar 

  • Parsons T, Geist E (2009) Tsunami Probability in a Caribbean Region. Pure Appl Geophys 165:2089–2116. doi:10.1007/s00024-008-0416-7

    CrossRef  Google Scholar 

  • Priest GR, Goldfinger C, Wang K, Witter RC, Zhang Y, Baptista AM (2010) Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone. Nat Hazards 54:27–73. doi:10.1007/s11069-009-9453-5

    CrossRef  Google Scholar 

  • Power W, Downes G, Stirling M (2007) Estimation of tsunami hazard in New Zealand due to South American Earthquakes. Pure Appl Geophys 164:547–564

    CrossRef  Google Scholar 

  • Power W, Wang X, Lane E, Gillibrand P (2013) A probabilistic tsunami hazard study of the Auckland region, part I: propagation modelling and tsunami hazard assessment at the shoreline. Pure Appl Geophys 170(9–10):1621–1634

    CrossRef  Google Scholar 

  • Rikitake T, Aida I (1988) Tsunami hazard probability in Japan. Bull Seismol Soc Jpn 78(3):1268–1278

    Google Scholar 

  • Sørensen MB, Spada M, Babeyko A, Wiemer S, Grünthal G (2012) Probabilistic tsunami hazard in the Mediterranean Sea. J Geophys Res: Solid Earth, 117(B1)

    Google Scholar 

  • Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81(6):941–950

    CrossRef  Google Scholar 

  • Somerville P, Irikura K, Graves R, Sawada S, Wald D, Abrahamson N et al (1999) Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismol Res Lett 70(1):59–80

    Google Scholar 

  • The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2011) Nationwide field survey of the 2011 off the Pacific coast of Tohoku Earthquake Tsunami. J Jpn Soc Civil Eng, Series B-2, 67(1):63–66

    Google Scholar 

  • Tinti S, Armigliato A, Tonini R, Maramai A, Graziani L (2005) Assessing the hazard related to tsunamis of tectonic origin: a hybrid statistical-deterministic method applied to southern Italy coasts. ISET J Earthq Technol 42(4):189–201

    Google Scholar 

  • Thio, H. K., & Somerville, P. (2009). A probabilistic tsunami hazard analysis of California. In TCLEE 2009: lifeline earthquake engineering in a multihazard environment, ASCE. pp 1–12

    Google Scholar 

  • Thio HK, Somerville P, Ichinose G (2007) Probabilistic analysis of strong ground motion and tsunami hazards in Southeast Asia. J Earthq Tsunami 1(02):119–137

    CrossRef  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wiebe DM, Cox DT (2014) Application of fragility curves to estimate building damage and economic loss at a community scale: a case study of Seaside, Oregon. Nat Hazards 71(3):2043–2061

    CrossRef  Google Scholar 

  • Witter RC, Zhang YJ, Wang K, Priest GR, Goldfinger C, Stimely L, English JT, Ferro PA (2013) Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere 9(6):1783–1803

    CrossRef  Google Scholar 

  • Yanagisawa K, Imamura F, Sakakiyama T, Annaka T, Takeda T, Shuto N (2007) Tsunami assessment for risk management at nuclear power facilities in Japan. Pure Appl Geophys 164(2–3):565–576

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors appreciate for contributions to modeling and making examples by Professor P. Martin Mai (KAUST), Dr. Tomohiro Yasuda (Kansai University), Dr. Hyoungsu Park (Oregon State University), and Dr. Raffaele De Risi (University of Bristol).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhito Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mori, N., Goda, K., Cox, D. (2018). Recent Process in Probabilistic Tsunami Hazard Analysis (PTHA) for Mega Thrust Subduction Earthquakes. In: Santiago-Fandiño, V., Sato, S., Maki, N., Iuchi, K. (eds) The 2011 Japan Earthquake and Tsunami: Reconstruction and Restoration. Advances in Natural and Technological Hazards Research, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-58691-5_27

Download citation