Skip to main content

Soil Fertility Management in Sub-Saharan Africa

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 25))

Abstract

Most of the population in sub-Saharan Africa depends on agriculture for livelihood, which is mainly practiced by resource-constrained smallholder farmers. Due to persistent low crop yields, food and nutrition insecurity, farmers have been opening new lands through deforestation or encroachment into marginal lands where possible, seeking for additional yields, which has aggravated soil erosion, land degradation , and eutrophication of water bodies. Adoption of integrated soil fertility management practices in the smallholder farming systems has been affected by several factors including poor access to improved agricultural inputs, poor understanding of the practices and their benefits, and importantly limited financial capacity.

Here we review challenges of soil fertility management in the smallholder farming systems of sub-Saharan Africa. Our major findings are: (1) most countries have not been able to meet the fertilizer target of 50 kg nutrients ha−1 by 2015 in the 2006 Abuja Declaration; over 65% of the smallholder farmers have not used fertilizer and 75% of the agricultural soils have been affected by nutrient depletion. (2) Poor agricultural practices have resulted in an average annual nutrient loss of 50 kg ha−1, which represented an equivalent of US$ four billion lost in 2008 and an estimated economic cost of up to 18% of the gross domestic product in addition to eutrophication of water bodies. (3) Value cost ratios of agricultural inputs that are less than three are common, which has limited the profitability of integrated soil fertility management practices.

(4) Proliferation of fake agricultural inputs has been reported in over 40–60% of the cases as a consequence of poor enforcement of quality standards. (5) In addition to blanket recommendations, fertilization has focused on nitrogen, phosphorus and potassium, with little emphasis on secondary and micro-nutrients as well as organic amendments or liming materials in acid soils, which has generally resulted in poor crop responses or low yield increments. (6) Effective adoption of integrated soil fertility management would result in at least doubling the current nutrient agronomic use efficiency in the smallholder farming systems and reduction of the actual yield gap averaged to more than 300% for cereal and legume crops. Based on these findings, operationalization of supportive policies to increase adoption of good agronomic practices and investment in research to develop solutions appropriate to smallholder farmers should be recommended.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Affognon H, Mutungi C, Sanginga P et al (2015) Unpacking postharvest losses in sub-Saharan Africa: a meta-analysis. World Dev 66:49–68. doi:10.1016/j.worlddev.2014.08.002

    Article  Google Scholar 

  • Agegnehu G, van Beek C, Bird MI (2014) Influence of integrated soil fertility management in wheat and tef productivity and soil chemical properties in the highland tropical environment. J Soil Sci Plant Nutr 14:532–545. doi:10.4067/s0718-95162014005000042

    CAS  Google Scholar 

  • AGRA (2011) Investing in sustainable agricultural growth – a five-year status report. Alliance for a Green Revolution in Africa (AGRA). www.agra.org. Accessed on 23 Dec 2015

  • AGRA (2013) Africa agriculture status report: focus on staple crops. Alliance for a Green Revolution in Africa (AGRA). AGRA, Nairobi

    Google Scholar 

  • AGRA (2014a) Improving fertilizer supplies for African farmers. Alliance for a Green Revolution in Africa (AGRA). www.agra.org. Accessed on 19 Dec 2015

  • AGRA (2014b) An assessment of agricultural policy and regulatory constraints to agribusiness investment in Burkina Faso, Ethiopia, Ghana, Nigeria and Tanzania. Alliance for a Green Revolution in Africa (AGRA). AGRA, Nairobi

    Google Scholar 

  • Akpan SB, Nkanta VS, Essien UA (2012a) A double-durdle model for fertilizer adoption and optimum use among farmers in southern Nigeria. Tropicultura 30:249–253

    Google Scholar 

  • Akpan SB, Udoh EJ, Nkanta VS (2012b) Factors influencing fertilizer use intensity among smallholder crop farmers in Abak agricultural zone in Akwa Ibom State, Nigeria. J Biol Agric Healthc 2:54–65

    Google Scholar 

  • Akudugu MA, Guo E, Dadzie SK (2012) Adoption of modern agricultural production technologies by farm households in Ghana: what factors influence their decisions? J Biol Agric Healthc 2:1–13

    Google Scholar 

  • Alobo Loison S (2015) Rural livelihood diversification in sub-Saharan Africa: a literature review. J Dev Stud 51:1125–1138. doi:10.1080/00220388.2015.1046445

    Article  Google Scholar 

  • Aloyce GM, Gabagambi DM, Hella JP (2014) Assessment of operational aspects of the input supply chain under national agriculture input voucher scheme (NAIVS) in Tanzania. J Dev Agric Econ 6:94–104. doi:10.5897/JDAE2013.0516

    Article  Google Scholar 

  • Argaw A, Mekonnen E, Muleta D (2015) Agronomic efficiency of N of common bean (Phaseolus vulgaris L.) in some representative soils of Eastern Ethiopia. Cogent Food Agric. doi:10.1080/23311932.2015.1074790

  • Ashour M, Billings L, Gilligan DO et al (2015) Evaluation of the impact of e-verification on counterfeit agricultural inputs and technology adoption in Uganda. https://agrilinks.org. Accessed 20 Dec 2015

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950. doi:10.1081/CSS-100104098

    Article  CAS  Google Scholar 

  • Bold T, Kaizzi KC, Svensson J et al (2015) Low quality, low returns, low adoption: evidence from the market for fertilizers and hybrid seed in Uganda. International Growth Centre. http://www.amitsa.org. Accessed 20 Dec 2015

  • Brentrup F, Pallière C (2006) Nitrogen use efficiency as an agro-environmental indicator. http://www.oecd.org. Accessed on 23 May 2015

  • Bumb BL, Johnson ME, Fluentes PA (2011) Policy options for improving regional fertilizer markets in West Africa. IFPRI discussion paper 01084, International Food Policy Research Institute, Washington DC

    Google Scholar 

  • CAB International (2012) Enhancing national agriculture research capacities in developing and fine-tuning fertilizer recommendations within an integrated soil fertility management framework. Proposal submitted to Alliance for Green Revolution in Africa (AGRA), CAB International, Nairobi

    Google Scholar 

  • Castellanos-Navarrete A, Tittonell P, Ruffino MC et al (2014) Feeding, crop residue and manure management for integrated soil fertility management – a case study from Kenya. Agric Syst. doi:10.1016/j.agsy.2014.03.001

    Google Scholar 

  • Chirwa E, Dorward A (2013) Agricultural input subsidies – the recent Malawi experience. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cobo JG, Dercon G, Cadisch G (2010) Nutrient balances in African land use systems across different spatial scales: A review of approaches, challenges, and progress. Agric Ecosyst Environ 136:1–15. doi:10.1016/j.agee.2009.11.006

    Article  Google Scholar 

  • de Boef W, Pradhala P (2014) Counterfeiting in African agricultural inputs – challenges & solutions. https://agrilinks.org. Accessed 20 Dec 2015

  • Dentener F, Keating T, Akimoto H (2010) Hemispheric transport of air pollution (HTAP) Part A: ozone and particulate matter air pollution studies No.17. United Nations, Geneva

    Google Scholar 

  • Denning G, Kabambe P, Sanchez P et al (2009) Input subsidies to improve smallholder maize productivity in Malawi: toward an African Green Revolution. PLoS Biol 7(1):2–10. doi:10.1371/journal.pbio.1000023

    Article  CAS  Google Scholar 

  • Diogo RVC, Schlecht E, Buerkert A et al (2013) Increasing nutrient use efficiency through improved feeding and manure management in urban and peri-urban livestock units of a West African city: a scenario analysis. Agric Syst 114:64–72. doi:10.1016/j.agsy.2012.09.001

    Article  Google Scholar 

  • Dittoh S, Omotosho O, Belemvire A et al (2012) Improving the effectiveness, efficiency and sustainability of fertilizer use in sub-Saharan Africa. Policy research paper 3, Global Development Network, New Dehli

    Google Scholar 

  • Dobermann AR (2005) Nitrogen use efficiency – State of the art. Agronomy and Horticulture – Faculty Publications. http://digitalcommons.unl.edu/agronomyfacpub/316. Accessed 6 Mar 2016

  • Dorward A, Chirwa E, Boughton D et al (2008) Towards ‘smart’ subsidies in agriculture? Lessons from recent experience in Malawi. Overseas Development Institute, London. http://www.odi.org. Accessed 26 Jan 2016

  • Edmonds DE, Abreu SL, West A et al (2009) Cereal nitrogen use efficiency in sub-Saharan Africa. J Plant Nutr 32:2107–2122. doi:10.1018/01904160903308184

    Article  CAS  Google Scholar 

  • Etwire PM, Dogbe W, Martey E et al (2014) Innovative agricultural technology dissemination: finding a new use for motor tricycles. Am J Exp Agric 4:1288–1304

    Article  Google Scholar 

  • Fageria NK, de Morais OP, dos Santos AB (2010) Nitrogen use efficiency in upland rice genotypes. J Plant Nutr 33:1696–1711. doi:10.1080/01904167.2010.496892

    Article  CAS  Google Scholar 

  • Fairhurst T (2012) Handbook for integrated soil fertility management. CAB International, Nairobi

    Google Scholar 

  • Fenn ME, Baron JS, Allen EB et al (2003) Ecological effects of nitrogen deposition in the Western Unites States. Bioscience 53(4):404–420

    Article  Google Scholar 

  • Fondriest S, Kline N, Wanzala-Mlobela M et al (2012) Building enabling environment for fertilizer sector growth. Policy brief, July 2012, No. 3. Fintrac Inc, Wasington, DC

    Google Scholar 

  • Galy-Lacaux C, Delon C (2014) Nitrogen emission and deposition budget in West and Central Africa. Environ Res Lett 9:1–13. doi:10.1088/1748-9326/9/12/125002

    Article  Google Scholar 

  • Ghosh N (2004) Promoting bio-fertilizers in Indian Agriculture. Econ Polit Wkly 39(52):5617–5625

    Google Scholar 

  • Ghosh BN, Singh RJ, Mishra PK (2015) Soil and input management options for increasing nutrient use efficiency. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer India, New Dehli, pp 17–27. doi:10.1007/978-81-322-2169-2_2

    Chapter  Google Scholar 

  • Gilbert N (2012) African agriculture: dirt poor – the key to tackling hunger in Africa is enriching its soil: the big debate is about how to do it. Nature 483, 525–527. http://www.nature.com/news/african-agriculture-dirt-poor-1.10311. Accessed 6 Mar 2016

  • Giller KE, Tittonel P, Rufino MC et al (2011) Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within farming systems to support innovation and development. Agric Syst 104:191–203. doi:10.1016/j.agsy.2010.07.002

    Article  Google Scholar 

  • Graeub BE, Chappell MJ, Wittman H et al (2015) The state of family farms in the world. World Dev. doi:10.1016/j.worlddev.2015.05.012

    Google Scholar 

  • Guo Z, Koo J, Wood S (2009) Fertilizer profitability in East Africa: a spatially explicit policy analysis. Contributed paper prepared for presentation at the International Association of Agricultural Economics Conference, Beijing

    Google Scholar 

  • Henao J, Banante CA (1999) Estimating rates of nutrient depletion in soils of agricultural lands of Africa. International Fertilizer Developing Center, Muscle Shoals

    Google Scholar 

  • IFDC (2006) Africa Fertilizer Summit Proceedings, Abuja, Nigeria June 9–13 2006. International Fertilizer Development Center (IFDC), Florence

    Google Scholar 

  • Jama B (2014) Fertilizer quality problems in Africa: AGRA’s support to country implementation programs. In: AGRA (ed) Fertilizer quality control in Africa: lessons emerging from country-level projects. Alliance for a Green Revolution in Africa (AGRA). AGRA, Nairobi, pp 1–2

    Google Scholar 

  • Jefwa JM, Pypers P, Jemo M et al (2014) Do commercial biological and chemical products increase crop yields and economic returns under smallholder farmer conditions? In: Vanlauwe B, Asten P, Blomme G (eds) Challenges and opportunities for agricultural intensification of the humid highland systems of sub-Saharan Africa. Springer International Publishing, Cham, pp 81–96

    Google Scholar 

  • Johnston A, Bruulsema TW (2006) Using fertilizer efficiently. https://www.ipni.net. Accessed 26 Jan 2016

  • Kargbo J (2010) Agricultural input business development in Africa: opportunities, issues and challenges. United Nations Economic Commission for Africa – Southern Africa Office, http://www.uneca.org. Accessed 20 Dec 2015

  • Kassahun B (2015) Soil fertility mapping and fertilizer blending. Ethiopian Agricultural Transformation Agency (Ethiopian ATA) report, Addis Ababa

    Google Scholar 

  • Kelly VA (2006) Factors affecting demand for fertilizer in sub-Saharan Africa. Agriculture and rural development discussion paper 23, Agriculture and Rural Development Department, World Bank, Washington, DC

    Google Scholar 

  • Kihara J, Huising J, Nziguheba G et al (2015) Maize response to macronutrients and potential for profitability in sub-Saharan Africa. Nutr Cycl Agroecosyst. doi:10.1017/s10705-015-9717-2

    Google Scholar 

  • Kiptot E, Karuhanga M, Franzel S, Nzigamasabo PB (2016) Volunteer farmer-trainer motivations in East Africa: practical implications for enhancing farmer-to-farmer extension. Int J Agric Sustain. doi:10.1080/14735903.2015.1137685

    Google Scholar 

  • Kishe MA (2004) Physical and chemical characteristics of water in selected locations in Lake Victoria, Tanzania. Tanz J Sci 30:65–72

    Google Scholar 

  • Lambrecht I, Vanlauwe B, Merckx R et al (2014) Understanding the process of agricultural technology adoption: mineral fertilizer in Eastern DR Congo. World Dev 5:132–146. doi:10.1016/j.worlddev.2014.01.024

    Article  Google Scholar 

  • Leip A, Leach A, Musinguzi P et al (2014) Nitrogen-neutrality: a step towards sustainability. Environ Res Lett 9:1–10. doi:10.1088/1748-9326/9/11/115001

    Article  Google Scholar 

  • Liu J, You L, Amini M et al (2010) A high-resolution assessment on global nitrogen flow in cropland. PANS 107:8035–8040. doi:10.1073/pnas.0913658107

    Article  CAS  Google Scholar 

  • Liverpool-Tasie, SLO, Auchan AA, Banful AB (2010) An assessment of fertilizer quality regulation in Nigeria. Nigeria Strategy Support Program (NSSP), Report 09. International Food Policy Research Institute, Abuja

    Google Scholar 

  • Livingston G, Schonberger S, and Delaney S (2011) Sub-Saharan Africa: the state of smallholders in agriculture. Paper prepared at the IFAD conference on new directions for smallholder agriculture 24–25 Jan 2011, Rome

    Google Scholar 

  • Lu Q, He ZL, Stoffella PJ (2012) Land application of biosolids in the USA: a review. Appl Environ Soil Sci. doi:10.1155/2012/201462

    Google Scholar 

  • LVBC (2012) A basin-wide strategy for sustainable land management in the Lake Victoria Basin. Lake Victoria Basin Commission (LVBC), Kisumu

    Google Scholar 

  • Manos B, Begum MAA, Kamruzzaman M et al (2007) Fertilizer price policy, the environment and farms behavior. J Policy Model 29:87–97. doi:10.1016/j.jpolmod.2006.05.002

    Article  Google Scholar 

  • Marler JB, Wallin JR (2006) Human health, the nutritional quality of harvested food and sustainable farming systems. Nutrition Security Institute. http://www.nutritionsecurity.org. Accessed 21 Mar 2015

  • Masso C, Jefwa JM, Jemo M et al (2013) Impact of inadequate regulatory frameworks on the adoption of bio-fertilizers (e.g. PGPR) technologies: a case study of sub-Saharan Africa. In: Reddy MS, Ilao RI, Faylon PS et al (eds) Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture. CAB Direct, Oxfordshire, pp 276–286

    Google Scholar 

  • Minde I, Pedzisa T, Dimes J (2008) Improving access and utilization of fertilizers by smallholder farmers in the Limpopo province of South Africa. http://www.icrisat.org. Accessed 18 Mar 2015

  • Misiko M, Tittonell P, Giller KE et al (2011) Strengthening understanding and perceptions of mineral fertilizer use among smallholder farmers: evidence from collective trials in western Kenya. Agric Hum Values 28:27–38. doi:10.1007/s10460-010-9264-z

    Article  Google Scholar 

  • Mtambanengwe F, Mapfumo P (2005) Organic matter management as an underlying cause for soil fertility gradients on smallholder farms in Zimbabwe. Nutr Cycl Agroecosyst 73:227–243. doi:10.1007/s10705-005-2652-x

    Article  Google Scholar 

  • Mtambanengwe F, Mapfumo P (2009) Combating food insecurity on sandy soils in Zimbabwe: the legume challenge. Symbiosis 48:25–36

    Article  Google Scholar 

  • Muchena SC (2001) Proven and cost-effective soil fertility restoration and maintenance technologies: the ACFD experience. In: Roy RN, Nabhan H (eds) Soil and nutrient management in sub-Saharan Africa in support of the soil fertility initiative. FAO, Rome, pp 269–280

    Google Scholar 

  • Mugwe J, Mugendi D, Mucheru-Muna M et al (2009) Determinants of the decision to adopt integrated soil fertility management practices by smallholder farmers in the Central Highlands of Kenya. Exp Agric 45:61–75. doi:10.1017/S0014479708007072

    Article  Google Scholar 

  • Muli J, Mavutu K, Ntiba J (2000) Micro-invertebrate fauna of water hyacinth in Kenyan waters of Lake Victoria. Int J Ecol Environ Sci 20:281–302

    Google Scholar 

  • Mutegi J, Zingore S (2014) Closing yield gaps in sub-Saharan Africa through integrated soil fertility management. ISFM Policy Highlights No. 1, International Plant Nutrition Institute, Nairobi

    Google Scholar 

  • NAAIAP (2014) Soil suitability evaluation for maize production in Kenya. National Accelerated Agricultural Input Access Programme (NAAIAP), Nairobi

    Google Scholar 

  • Mutegi J, Kabambe V, Zingore S et al (2015) The fertilizer recommendation issues in Malawi: gaps, challenges, opportunities, and guidelines: Soil Health Consortium of Malawi. Ecomedia Limited, Nairobi

    Google Scholar 

  • Nezomba H, Tauro TP, Mtambanengwe F et al (2010) Indigenous legume fallows (indifallows) as an alternative soil fertility resource in smallholder maize cropping systems. Field Crop Res 115:149–157. doi:10.1016/j.fcr.2009.10.015

    Article  Google Scholar 

  • Nezomba H, Mtambanengwe F, Chikomo R et al (2014) Sequencing integrated soil fertility management options for sustainable crop intensification by different categories of smallholder farmers in Zimbabwe. Exp Agric. doi:10.1017/S0014479714000131

    Google Scholar 

  • Nezomba H, Mtambanengwe F, Tottonell P et al (2015) Point of no return? Rehabilitating degraded soils for increased crop productivity on smallholder farms in eastern Zimbabwe. Geoderma 239–240:143–145. doi:10.1016/j.geoderma.2014.10.006

    Article  Google Scholar 

  • Nkonya E, Place F, Pender J et al (2011) Climate risk management through sustainable land management in sub-Saharan Africa. Discussion Paper, International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Nziguheba G, Palm CA, Berhe T et al (2010) The African green revolution: results from the millenium villages project. Adv Agron 109:75–115. doi:10.1016/S0065-2113(10)09003-6

    Article  Google Scholar 

  • Nziguheba G, Vargas R, Bationo A et al (2015) Soil carbon: a critical natural resource - wide-scale goals, urgent actions. In: Banwart SA, Noellemeyer E, Milne E (eds) Soil carbon: science, management and policy for multiple benefits. SCOPE 7, CAB International, Wallingford, pp 10–25

    Google Scholar 

  • Odada EO, Olago DO, Kulindwa K et al (2004) Mitigation of environmental problems in Lake Victoria, East Africa: causal chain and policy option analyses. Ambio 33:13–23. doi:10.1579/0044-7447-33.1.13

    Article  PubMed  Google Scholar 

  • Phoenix GK, Emmett BA, Britton AJ et al (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Chang Biol 18:1197–1215. doi:10.1111/j.1365-2486.2011.02590.x

    Article  Google Scholar 

  • Rufino MC, Brandt P, Herrero M (2014) Reducing uncertainty in nitrogen budgets for African livestock systems. Environ Res Lett 9:1–14. doi:10.1088/1748-9326/9/10/105008

    Article  Google Scholar 

  • Rware H, Wairegi L, Oduor G et al (2014) Assessing the potential to change stakeholders knowledge and practices on fertilizer recommendations in Africa. Agric Sci 5:1384–1391. doi:10.4236/as.2014.514149

    Google Scholar 

  • Schaffnit-Chatterjee C (2014) Agricultural value chains in sub-Saharan Africa: current issues - Emerging markets. Deutche Bank Research. www.dbresearch.com. Accessed 23 Mar2015

  • Shao D, Edward S (2014) Combating fake agro-inputs products in Tanzania using mobile phones. Int J Comput Appl 97:21–25

    Google Scholar 

  • Sheahan M, Barrett CB (2014) Understanding the agricultural input landscape in sub-Saharan Africa – Recent plot, household, and community-level evidence. Office of the Chief Economist, Africa region, World Bank Group, Washington DC

    Google Scholar 

  • Shiferaw B, Tesfaye K, Kassie M et al (2014) Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim Extremes 3:67–79. doi:10.1016/j.wace.2014.04.004

    Article  Google Scholar 

  • Simtowe F, Kassie M, Diagne A et al (2011) Determinants of agricultural technology adoption: the case of improved pigeonpea varieties in Tanzania. Q J Int Agric 50:325–345

    Google Scholar 

  • Snyder CS, Bruulsema TW (2007) Nutrient use efficiency and effectiveness in North America: indices of agronomic and environmental benefit. International Plant Nutrition Institute (IPNI). www.ipni.net. Accessed 21 May 2015

  • Stoorvogel JJ, Smaling EMA (1990) Assessment of soil nutrient depletion in sub-Saharan Africa: 1983–2000. The Winard Staring Centre, Wageningen

    Google Scholar 

  • Sutton MA, Bleeker A, Howard CM et al (2013) Our nutrient world: the challenge to produce more food and energy with less pollution. Centre for Ecology and Hydrology, Edinburgh

    Google Scholar 

  • Svensson J (2013) Why is the green revolution so slow in Africa? An empirical investigation of the market for (fake) seeds and fertilizers in Uganda. Stockholm University. http://www.theigc.org. Accessed on 20 Dec 2015

  • TerrAfrica (2009) Policy and financing for sustainable land management in sub-Saharan Africa. http://www.terrafrica.org. Accessed 23 Mar 2015

  • The Fertilizer Institute (2015) 2015 4R nutrient stewardship summit. http://www.nutrientstewardship.com. Accessed 26 Jan 2016

  • Thuo M, Bravo-Ureta BE, Hathie I et al (2011) Adoption of chemical fertilizer by smallholder farmers in the peanut and basin of Senagal. Afr J Agric Resour Econ 6:1–17

    Google Scholar 

  • Tittonell P, Giller KE (2013) When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crop Res 143:76–90. doi:10.1016/j.fcr.2012.10.007

    Article  Google Scholar 

  • Tittonell P, Muriuki A, Klapwijk CJ et al (2013) Soil heterogeneity and soil fertility gradients in smallholder farms of the East African highlands. Soil Sci Soc Am J 77:525–538. doi:10.2136/sssaj2012.0250

    Article  CAS  Google Scholar 

  • Vanlauwe B, Sanginga N (2004) Impact of tree component on N cycling in agroforestry under sub-humid tropical conditions. West Afr J App Ecol 6:75–84

    Google Scholar 

  • Vanlauwe B, Bationo A, Chianu J et al (2010) Integrated soil fertility management Operational definition and consequences for implementation and dissemination. Outlook Agric 39:17–24. doi:10.5367/000000010791169998

    Article  Google Scholar 

  • Vanlauwe B, Kihara J, Chivenge P et al (2011) Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil 339:35–50. doi:10.1007/s11104-010-0462-7

    Article  CAS  Google Scholar 

  • Vanlauwe B, Coyne D, Gockowski J et al (2014a) Sustainable intensification and the African smallholder farmer. Curr Opin Environ Sustain 8:15–22. doi:10.1016/j.cosust.2014.06.001

    Article  Google Scholar 

  • Vanlauwe B, Wendt J, Giller KE et al (2014b) A forth principle is required to define conservation agriculture in sub-Saharan Africa: the appropriate use of fertilizer to enhance crop productivity. Field Crop Res 155:10–13. doi:10.1016/j.fcr.2013.10.002

    Article  Google Scholar 

  • Vanlauwe B, Descheemaeker K, Giller KE et al (2015) Integrated soil fertility management in sub-Saharan Africa. Soil 1:491–508. doi:10.5194/soil-1-491-2015

    Article  Google Scholar 

  • Vet R, Richard S, Carou AS et al (2014) A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100. doi:10.1016/j.atmosenv.2013.10.060

    Article  CAS  Google Scholar 

  • Wairegi L, van Asten P (2010) The agronomic and economic benefits of fertilizer and mulch use in highland banana systems in Uganda. Agron Syst 103:543–550. doi:10.1016/j.agsy.2010.06.002

    Article  Google Scholar 

  • Wanzala M (2011) The Abuja declaration on fertilizers for an African green revolution – status of implementation at regional and national levels. Policy Alignment and Program Development Directorate, The New Partnership for Africa’s Development (NEPAD), Johannesburg

    Google Scholar 

  • Whitbread A, Sennhenn A, Grotelüschen K (2013) Nitrogen use-efficiency in maize-based farming systems in Malawi: a simulation study and meta-analysis of literature. Final Report, Georg-August-Universität Göttingen, Göttingen

    Google Scholar 

  • Xu Z, Guan G, Jayne TS et al (2009) Factors influencing the profitability of fertilizer use on maize in Zambia. Agric Econ 40:437–446. doi:10.1111/j.1574-0862.2009.00384.x

    Article  Google Scholar 

  • Zhou M, Brandt P, Pelster D et al (2014) Regional nitrogen budget of the Lake Victoria Basin, East Africa: syntheses, uncertainties, and perspectives. Environ Res Lett 9:1–10. doi:10.1088/1748-9326/9/10/105008

    Article  Google Scholar 

  • Zingore S, Murwira HK, Delve RJ et al (2007) Soil type, management history and current resource allocation: three dimensions regulating variability in crop productivity on African smallholder farms. Field Crop Res 101:296–305. doi:10.1016/j.fcr.2006.12.006

    Article  Google Scholar 

  • Zingore S, Njoroge S, Chikowo R et al (2014) 4R Plant nutrient management in African agriculture. An extension handbook for fertilizer management in smallholder farming system. IPNI. http://www.fssa.org.za/Articles/4R_Extension_Handbook.pdf. Accessed 6 Mar 2016

Download references

Acknowledgment

The authors would like to acknowledge the support of the International Nitrogen Initiative (INI) for the facilitation of the November 4–5, 2014 workshop of the Africa Regional Centre. They would also like to acknowledge the contribution of the following scientists to the workshop: Drs. Mateete Bekunda, Stephen Humphreys, Henri Tonnang, Ouzanne Abdelhakim, Kwaku Tano-Debrah, Dieudonne Harahagazwe, Bussie Maziya-Dixon, Shamie Zingore, Mariana Rufino, Rebbie Harawa, Sifi Bouaziz, Moses Thuita, and Dries Roobroeck, as well as Mr. Benjamin Kyalo. This review was also conducted in the context of a project funded by the Bill & Melinda Gates Foundation and implemented by the International Institute of Tropical Agriculture for institutionalization of quality control for agricultural inputs and dissemination of high quality agricultural inputs to increase crop yields and improve food security and livelihood of smallholder farmers in sub-Saharan Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cargele Masso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Masso, C. et al. (2017). Soil Fertility Management in Sub-Saharan Africa. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-58679-3_7

Download citation

Publish with us

Policies and ethics