Morphology Engineering and Industrial Relevant Device Processing of Light-Emitting Electrochemical Cells



This chapter discusses the importance of the interplay between materials, morphology, processing, and device performance for the fabrication of light-emitting electrochemical cells (LEC) by industrially relevant technologies. This is centered on the utilization of the polymer solid electrolytes as a mean to tune device performance, film morphology, and rheological properties. Tunable parameters include the choice of molecular weight, material ratio, or monomer ratio in the case of copolymers. We highlight the advantages of LECs over other technologies in terms of their simplicity of fabrication by reviewing the latest research on printed devices utilizing techniques like gravure and inkjet printing, as well as spray and slot-die coating.


Light-emitting electrochemical cells Solid electrolyte Printing parameters Layer morphology Industry-relevant printing methods 



This work was partially supported by the Federal Ministry for Education and Research grant numbers 03X5526 and 13N11903. The authors are grateful to M. Hamburger, S. Stolz, R. Eckstein, U. Lemmer for fruitful discussions.


  1. 1.
    C. Tang, S. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)CrossRefGoogle Scholar
  2. 2.
    G. Chansin, K. Ghaffarzadeh, H. Zervos, OLED Display Forecasts 2016–2026: The Rise of Plastic and Flexible Displays (2016)Google Scholar
  3. 3.
    B. Geffroy, P. Le Roy, C. Prat, Pol. Int. 55, 572 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, Nature 459, 234 (2009)CrossRefGoogle Scholar
  5. 5.
    R. Das, P. Harrop, Printed, Organic & Flexible Electronics Forecasts, Players & Opportunities 2016–2026 (2016)Google Scholar
  6. 6.
    P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, N.D. Robinson, ACS Nano 4, 637 (2010)CrossRefGoogle Scholar
  7. 7.
    L. Edman, Electrochim. Acta 50, 3878 (2005)CrossRefGoogle Scholar
  8. 8.
    P. Matyba, K. Maturova, M. Kemerink, N.D. Robinson, L. Edman, Nature Mater. 8, 672 (2009)CrossRefGoogle Scholar
  9. 9.
    S.B. Meier, D. Tordera, A. Pertegás, C. Roldán-Carmona, E. Ortí, H.J. Bolink, Mater. Today 17, 217 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Sandström, L. Edman, Energy Tech. 3, 329 (2015)CrossRefGoogle Scholar
  11. 11.
    S.B. Meier, D. Hartmann, D. Tordera, H.J. Bolink, A. Winnacker, W. Sarfert, Phys. Chem. Chem. Phys. 14, 10886 (2012)CrossRefGoogle Scholar
  12. 12.
    R.D. Costa, E. Ortí, H.J. Bolink, Pure Appl. Chem. 83, 2115 (2011)CrossRefGoogle Scholar
  13. 13.
    Q. Pei, G. Yu, C. Zhang, Y. Yang, A.J. Heeger, Science 269, 1086 (1995)CrossRefGoogle Scholar
  14. 14.
    S.B. Meier, S. van Reenen, B. Lefevre, D. Hartmann, H.J. Bolink, A. Winnacker, W. Sarfert, M. Kemerink, Adv. Funct. Mater. 23, 3531 (2013)CrossRefGoogle Scholar
  15. 15.
    F. Huang, H. Wu, Y. Cao, Chem. Soc. Rev. 39, 2500 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Stolz, M. Petzoldt, N. Kotadiya, T. Rödlmeier, R. Eckstein, J. Freudenberg, U.H. Bunz, U. Lemmer, E. Mankel, M. Hamburger, et al. J. Mater. Chem. C 4, 11150 (2016)Google Scholar
  17. 17.
    A. Sandström, H.F. Dam, F.C. Krebs, L. Edman, Nature Commun. 3, 1002 (2012)CrossRefGoogle Scholar
  18. 18.
    H. Kipphan, Handbook of Print Media: Technologies and Production Methods (Springer Science & Business Media, 2001)Google Scholar
  19. 19.
    S. Tang, L. Edman, J. Phys. Chem. Lett. 1, 2727 (2010)CrossRefGoogle Scholar
  20. 20.
    D. Tordera, S. Meier, M. Lenes, R.D. Costa, E. Ortí, W. Sarfert, H.J. Bolink, Adv. Mater. 24, 897 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Mindemark, L. Edman, J. Mater. Chem. C 4, 420 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Zimmermann, N. Jürgensen, A.J. Morfa, B. Wang, S. Tekoglu, G. Hernandez-Sosa, ACS Sust. Chem. Eng. (2016)Google Scholar
  23. 23.
    G. Hernandez-Sosa, R. Eckstein, S. Tekoglu, T. Becker, F. Mathies, U. Lemmer, N. Mechau, Org. Elec. 14, 2223 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Matyba, M.R. Andersson, L. Edman, Org. Elec. 9, 699 (2008)CrossRefGoogle Scholar
  25. 25.
    L. Sardone, C.C. Williams, H.L. Anderson, G. Marletta, F. Cacialli, P. Samori, Adv. Funct. Mater. 17, 927 (2007)CrossRefGoogle Scholar
  26. 26.
    F.P. Wenzl, P. Pachler, C. Suess, A. Haase, E.J. List, P. Poelt, D. Somitsch, P. Knoll, U. Scherf, G. Leising, Adv. Funct. Mater. 14, 441 (2004)CrossRefGoogle Scholar
  27. 27.
    J. Chappell, D.G. Lidzey, P.C. Jukes, A.M. Higgins, R.L. Thompson, S.O’Connor, I. Grizzi, R. Fletcher, J. O’Brien, M. Geoghegan, et al. Nat. Mater. 2, 616 (2003)Google Scholar
  28. 28.
    E. Moons, J. Phys, Condensed Matter 14, 12235 (2002)CrossRefGoogle Scholar
  29. 29.
    R.D. Costa, A. Pertegás, E. Ortí, H.J. Bolink, Chem. Mater. 22, 1288 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Shao, G.C. Bazan, A.J. Heeger, Adv. Mater. 19, 365 (2007)CrossRefGoogle Scholar
  31. 31.
    J.M. Anderson, M.S. Shive, Adv. Drug Deliv. Rev. 64, 72 (2012)CrossRefGoogle Scholar
  32. 32.
    B. Dhandayuthapani, Y. Yoshida, T. Maekawa, D.S. Kumar, Int. J. Polit. Sci. 2011, (2011)Google Scholar
  33. 33.
    H.K. Makadia, S.J. Siegel, Polymers 3, 1377 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Irimia-Vladu, E.D. Glowacki, G. Voss, S. Bauer, N.S. Sariciftci, Mater. Today 15, 340 (2012)CrossRefGoogle Scholar
  35. 35.
    D.A. Norris, N. Puri, M.E. Labib, P.J. Sinko, J. Control. Rel. 59, 173 (1999)CrossRefGoogle Scholar
  36. 36.
    G. Hernandez-Sosa, S. Tekoglu, S. Stolz, R. Eckstein, C. Teusch, J. Trapp, U. Lemmer, M. Hamburger, N. Mechau, Adv. Mater. 26, 3235 (2014)CrossRefGoogle Scholar
  37. 37.
    R.R. Søndergaard, M. Hösel, F.C. Krebs, J. Polym. Sci. B: Polym. Phys. 51, 16 (2013)CrossRefGoogle Scholar
  38. 38.
    G. Hernandez-Sosa, N. Bornemann, I. Ringle, M. Agari, E. Dörsam, N. Mechau, U. Lemmer, Adv. Funct. Mater. 23, 3164 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Tekoglu, G. Hernandez-Sosa, E. Kluge, U. Lemmer, N. Mechau, Org. Elect. 14, 3493 (2013)CrossRefGoogle Scholar
  40. 40.
    L. Wu, Z. Dong, F. Li, H. Zhou, Y. Song, Adv. Opt. Mater. (2016)Google Scholar
  41. 41.
    G. Mauthner, K. Landfester, A. Köck, H. Brückl, M. Kast, C. Stepper, E.J. List, Org. Elect. 9, 164 (2008)CrossRefGoogle Scholar
  42. 42.
    E.M. Lindh, A. Sandström, L. Edman, Small 10, 4148 (2014)CrossRefGoogle Scholar
  43. 43.
    F.C. Krebs, N. Espinosa, M. Hösel, R.R. Søndergaard, M. Jørgensen, Adv. Mater. 26, 29 (2014)CrossRefGoogle Scholar
  44. 44.
    J. Fang, P. Matyba, L. Edman, Adv. Funct. Mater. 19, 2671 (2009)CrossRefGoogle Scholar
  45. 45.
    A. Sandström, A. Asadpoordarvish, J. Enevold, L. Edman, Adv. Mater. (2014)Google Scholar
  46. 46.
    A. Abdellah, B. Fabel, P. Lugli, G. Scarpa, Org. Elect. 11, 1031 (2010)CrossRefGoogle Scholar
  47. 47.
    A. Falco, A. Zaidi, P. Lugli, A. Abdellah, Org. Elect. 23, 186 (2015)CrossRefGoogle Scholar
  48. 48.
    A. Morfa, T. Rödlmeier, N. Jürgensen, S. Stolz, G. Hernandez-Sosa, Cellulose 23, 3809 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Light Technology InstituteKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.InnovationLabHeidelbergGermany

Personalised recommendations