Quantum Dot Based Light-Emitting Electrochemical Cells

Chapter

Abstract

Quantum dots (QDs) have cemented their position in lighting applications due to their outstanding optical properties, color purity with narrow emission spectrum, and solution processability. Recently, they have been introduced into light-emitting electrochemical cells (LECs). This system represents a promising large-area device concept based on solution fabrication procedures and air-stable electrode materials. LECs based on CdSe/CdS core/shell QDs achieve bright, uniform and highly voltage-independent electroluminescence with maximum brightness up to 1000 cd/m2 and current efficiencies of 1.9 cd/A; comparable with multilayer QD-based light-emitting diodes (LEDs). However, some limitations still need to be overcome: the decrease in photoluminescence quantum yield (ϕ) after the ligand-exchange step and the unstable blue emission. Recently emerged hybrid organic–inorganic or fully inorganic perovskite nanocrystals (NCs) do not suffer from these undesirable features. Unlike core/shell QDs, they show high ϕ without surface passivation, tunable band gaps via quantum confinement or simple changes in composition, and also show no spectral broadening from high surface trap densities. All these characteristics make perovskite QDs a very competitive alternative as the emitting material in LECs.

Keywords

Colloidal quantum dots Core/shell quantum dots Perovskite nanocrystals Light-emitting electrochemical cells 

Notes

Acknowledgements

M.F.A. acknowledges the Scientific and Technological Research Council of Turkey. P. D. acknowledges support from the European Union through the award of a Marie Curie Intra-European Fellowship.

References

  1. 1.
    P. Reiss, M. Carrière, C. Lincheneau, L. Vaure, S. Tamang, Chem. Rev. 116, 10731 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 46, 4630 (2007)CrossRefGoogle Scholar
  3. 3.
    T. Pellegrino, S. Kudera, T. Liedl, A. Muñoz Javier, L. Manna, W.J. Parak, Small. 1, 48 (2005)Google Scholar
  4. 4.
    Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulovic, Nat Photon. 7, 13 (2013)CrossRefGoogle Scholar
  5. 5.
    F. Todescato, I. Fortunati, A. Minotto, R. Signorini, J. Jasieniak, R. Bozio, Materials 9, 672 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)CrossRefGoogle Scholar
  7. 7.
    A.P. Alivisatos, J. Phys. Chem. 100, 13226 (1996)CrossRefGoogle Scholar
  8. 8.
    C.D.M. Donega, Chem. Soc. Rev. 40, 1512 (2011)Google Scholar
  9. 9.
    V.I. Klimov, Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (CRC Press, Boca Raton, 2003)Google Scholar
  10. 10.
    P. Reiss, M. Protière, L. Li, Small 5, 154 (2009)CrossRefGoogle Scholar
  11. 11.
    M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996)CrossRefGoogle Scholar
  12. 12.
    B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B. 101, 9463 (1997)CrossRefGoogle Scholar
  13. 13.
    X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Kazes, D.Y. Lewis, Y. Ebenstein, T. Mokari, U. Banin, Adv. Mater. 14, 317 (2002)CrossRefGoogle Scholar
  15. 15.
    K.D. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum Dots (CRC Press, Boca Raton, 2016)Google Scholar
  16. 16.
    T. Mokari, U. Banin, Chem. Mater. 15, 3955 (2003)CrossRefGoogle Scholar
  17. 17.
    X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)CrossRefGoogle Scholar
  18. 18.
    J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, J. Am. Chem. Soc. 125, 12567 (2003)CrossRefGoogle Scholar
  19. 19.
    Y. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 130, 5026 (2008)CrossRefGoogle Scholar
  20. 20.
    NREL. Accessed November 2016Google Scholar
  21. 21.
    P.P. Boix, S. Agarwala, T.M. Koh, N. Mathews, S.G. Mhaisalkar, J. Phys. Chem. Lett. (2015)Google Scholar
  22. 22.
    H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013)CrossRefGoogle Scholar
  23. 23.
    D.T. Moore, H. Sai, K.W. Tan, D.-M. Smilgies, W. Zhang, H.J. Snaith, U. Wiesner, L.A. Estroff, J. Am. Chem. Soc. 137, 2350 (2015)CrossRefGoogle Scholar
  24. 24.
    Y.-Y. Sun, M.L. Agiorgousis, P. Zhang, S. Zhang, Nano Lett. 15, 581 (2015)CrossRefGoogle Scholar
  25. 25.
    S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014)CrossRefGoogle Scholar
  26. 26.
    J.S. Manser, P.V. Kamat, Nat Photon. 8, 737 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Colella, M. Mazzeo, A. Rizzo, G. Gigli, A. Listorti, J. Phys. Chem. Lett. 7, 4322 (2016)CrossRefGoogle Scholar
  28. 28.
    D.B. Mitzi, J. Chem. Soc. Dalton Trans. 1 (2001)Google Scholar
  29. 29.
    D.B. Mitzi, Chem. Mater. 13, 3283 (2001)CrossRefGoogle Scholar
  30. 30.
    L.C. Schmidt, A. Pertegas, S. Gonzalez-Carrero, O. Malinkiewicz, S. Agouram, G. Minguez Espallargas, H.J. Bolink, R.E. Galian, J. Perez-Prieto, J. Am. Chem. Soc. 136, 850 (2014)CrossRefGoogle Scholar
  31. 31.
    Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, R.H. Friend, Nat Nano. 9, 687 (2014)CrossRefGoogle Scholar
  32. 32.
    S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews, S.G. Mhaisalkar, Adv. Mater. 28, 6804 (2016)CrossRefGoogle Scholar
  33. 33.
    D. Amgar, S. Aharon, L. Etgar, Adv. Funct. Mater. 26, 8576 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban, A.P. Alivisatos, L. He, Y. Liu, ACS Nano 10, 7943 (2016)CrossRefGoogle Scholar
  35. 35.
    P. Ramasamy, D.-H. Lim, B. Kim, S.-H. Lee, M.-S. Lee, J.-S. Lee, Chem. Commun. 52, 2067 (2016)CrossRefGoogle Scholar
  36. 36.
    D.D. Athayde, D.F. Souza, A.M.A. Silva, D. Vasconcelos, E.H.M. Nunes, J.C.D. da Costa, W.L. Vasconcelos, Ceram. Int. 42, 6555 (2016)Google Scholar
  37. 37.
    V. Zardetto, T.M. Brown, A. Reale, A. Di Carlo, J. Polym. Sci. Part B Polym. Phys. 49, 638 (2011)CrossRefGoogle Scholar
  38. 38.
    M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O.F. Mohammed, O.M. Bakr, Nat. Commun. 6, 7586 (2015)CrossRefGoogle Scholar
  39. 39.
    F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 9, 4533 (2015)CrossRefGoogle Scholar
  40. 40.
    P. Tyagi, S.M. Arveson, W.A. Tisdale, J. Phys. Chem. Lett. 6, 1911 (2015)CrossRefGoogle Scholar
  41. 41.
    A.B. Wong, M. Lai, S.W. Eaton, Y. Yu, E. Lin, L. Dou, A. Fu, P. Yang, Nano Lett. 15, 5519 (2015)CrossRefGoogle Scholar
  42. 42.
    J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K.Z. Milowska, R. García Cortadella, B. Nickel, C. Cardenas-Daw, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Nano Lett. 15, 6521 (2015)CrossRefGoogle Scholar
  43. 43.
    L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nano Lett. (2015)Google Scholar
  44. 44.
    G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent, M.V. Kovalenko, Nano Lett. 15, 5635 (2015)CrossRefGoogle Scholar
  45. 45.
    A. Swarnkar, R. Chulliyil, V.K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Angew. Chem. Int. Ed. 54, 15424 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Huang, F. Zhao, L. Liu, F. Zhang, X.-G. Wu, L. Shi, B. Zou, Q. Pei, H. Zhong, A.C.S. Appl, Mater. Interfaces 7, 28128 (2015)CrossRefGoogle Scholar
  47. 47.
    S. Zhuo, J. Zhang, Y. Shi, Y. Huang, B. Zhang, Angew. Chem. 127, 5785 (2015)CrossRefGoogle Scholar
  48. 48.
    H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, X.Y. Zhu, Nat. Mater. 14, 636 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Huang, A.S. Susha, S.V. Kershaw, T.F. Hung, A.L. Rogach, Adv. Sci. 2, 1500194 (2015)CrossRefGoogle Scholar
  50. 50.
    S. Gonzalez-Carrero, R.E. Galian, J. Perez-Prieto, J. Mater. Chem. A. 3, 9187 (2015)CrossRefGoogle Scholar
  51. 51.
    O. Vybornyi, S. Yakunin, M.V. Kovalenko, Nanoscale 8, 6278 (2016)CrossRefGoogle Scholar
  52. 52.
    Q.A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 137, 10276 (2015)CrossRefGoogle Scholar
  53. 53.
    Y. Tong, E. Bladt, M.F. Aygüler, A. Manzi, K.Z. Milowska, V.A. Hintermayr, P. Docampo, S. Bals, A.S. Urban, L. Polavarapu, J. Feldmann, Angew. Chem. Int. Ed. 55, 13887 (2016)CrossRefGoogle Scholar
  54. 54.
    Y. Bekenstein, B.A. Koscher, S.W. Eaton, P. Yang, A.P. Alivisatos, J. Am. Chem. Soc. 137, 16008 (2015)CrossRefGoogle Scholar
  55. 55.
    D. Zhang, S.W. Eaton, Y. Yu, L. Dou, P. Yang, J. Am. Chem. Soc. 137, 9230 (2015)CrossRefGoogle Scholar
  56. 56.
    A.J.N. Bader, A.A. Ilkevich, I.V. Kosilkin, J.M. Leger, Nano Lett. 11, 461 (2011)CrossRefGoogle Scholar
  57. 57.
    G. Qian, Y. Lin, G. Wantz, A.R. Davis, K.R. Carter, J.J. Watkins, Adv. Funct. Mater. 24, 4484 (2014)CrossRefGoogle Scholar
  58. 58.
    J. Frohleiks, S. Wepfer, Y. Kelestemur, H.V. Demir, G. Bacher, E. Nannen, A.C.S. Appl, Mater. Interfaces. 8, 24692 (2016)CrossRefGoogle Scholar
  59. 59.
    S. Coe, W.-K. Woo, M. Bawendi, V. Bulovic, Nature 420, 800 (2002)CrossRefGoogle Scholar
  60. 60.
    M.F. Aygüler, M.D. Weber, B.M.D. Puscher, D.D. Medina, P. Docampo, R.D. Costa, J. Phys. Chem. C 119, 12047 (2015)CrossRefGoogle Scholar
  61. 61.
    B.M.D. Puscher, M.F. Aygüler, P. Docampo, R.D. Costa, Adv. Energy Mater.Google Scholar
  62. 62.
    H. Zhang, H. Lin, C. Liang, H. Liu, J. Liang, Y. Zhao, W. Zhang, M. Sun, W. Xiao, H. Li, S. Polizzi, D. Li, F. Zhang, Z. He, W.C.H. Choy, Adv. Funct. Mater. 25, 7226 (2015)CrossRefGoogle Scholar
  63. 63.
    A.J. Nozik, Phy. E 14, 115 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Center for NanoscienceUniversity of Munich (LMU)MunichGermany
  2. 2.School of Electrical and Electronic EngineeringNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations