Skip to main content

Centromere Structure and Function

  • Chapter
  • First Online:
Book cover Centromeres and Kinetochores

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 56))

Abstract

The centromere is the genetic locus that specifies the site of kinetochore assembly, where the chromosome will attach to the kinetochore microtubule. The pericentromere is the physical region responsible for the geometry of bi-oriented sister kinetochores in metaphase. In budding yeast the 125 bp point centromere is sufficient to specify kinetochore assembly. The flanking region is enriched (3X) in cohesin and condensin relative to the remaining chromosome arms. The enrichment spans about 30–50 kb around each centromere. We refer to the flanking chromatin as the pericentromere in yeast. In mammals, a 5–10 Mb region dictates where the kinetochore is built. The kinetochore interacts with a very small fraction of DNA on the surface of the centromeric region. The remainder of the centromere lies between the sister kinetochores. This is typically called centromere chromatin. The chromatin sites that directly interface to microtubules cannot be identified due to the repeated sequence within the mammalian centromere. However in both yeast and mammals, the total amount of DNA between the sites of microtubule attachment in metaphase is highly conserved. In yeast the 16 chromosomes are clustered into a 250 nm diameter region, and 800 kb (16 × 50 kb) or ~1 Mb of DNA lies between sister kinetochores. In mammals, 5–10 Mb lies between sister kinetochores. In both organisms the sister kinetochores are separated by about 1 μm. Thus, centromeres of different organisms differ in how they specify kinetochore assembly, but there may be important centromere chromatin functions that are conserved throughout phylogeny. Recently, centromeric chromatin has been reconstituted in vitro using alpha satellite DNA revealing unexpected features of centromeric DNA organization, replication, and response to stress. We will focus on the conserved features of centromere in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alipour E, Marko JF (2012) Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40:11202–11212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravamudhan P, Felzer–Kim I, Joglekar AP (2013) The budding yeast point centromere associates with two Cse4 molecules during mitosis. Curr Biol 23:770–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aze A, Sannino V, Soffientini P, Bachi A, Costanzo V (2016) Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat Cell Biol 18:684–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhoum SF, Silkworth WT, Nardi IK, Nicholson JM, Compton DA, Cimini D (2014) The mitotic origin of chromosomal instability. Curr Biol 24:R148–R149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann C, Korner R, Hofmann K, Nigg EA (2007) PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128:101–114

    Article  CAS  PubMed  Google Scholar 

  • Benarroch-Popivker D, Pisano S, Mendez-Bermudez A, Lototska L, Kaur P, Bauwens S, Djerbi N, Latrick CM, Fraisier V, Pei B, Gay A, Jaune E, Foucher K, Cherfils-Vicini J, Aeby E, Miron S, Londono-Vallejo A, Ye J, Le Du MH, Wang H, Gilson E, Giraud-Panis MJ (2016) TRF2-Mediated control of telomere dna topology as a mechanism for chromosome-end protection. Mol Cell 61:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340

    Article  CAS  PubMed  Google Scholar 

  • Bermudez I, Garcia-Martinez J, Perez-Ortin JE, Roca J (2010) A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res 38:e182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernad R, Sanchez P, Rivera T, Rodriguez-Corsino M, Boyarchuk E, Vassias I, Ray-Gallet D, Arnaoutov A, Dasso M, Almouzni G, Losada A (2011) Xenopus HJURP and condensin II are required for CENP-A assembly. J Cell Biol 192:569–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL Jr, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582

    Article  CAS  PubMed  Google Scholar 

  • Bloom K, Joglekar A (2010) Towards building a chromosome segregation machine. Nature 463:446–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom KS, Carbon J (1982) Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell 29:305–317

    Article  CAS  PubMed  Google Scholar 

  • Bloom KS, Fitzgerald-Hayes M, Carbon J (1983) Structural analysis and sequence organization of yeast centromeres. Cold Spring Harb Symp Quant Biol 47(Pt 2):1175–1185

    Article  PubMed  Google Scholar 

  • Bloom K, Amaya E, Yeh E (1984) Centromeric DNA structure in yeast chromatin. In: Borisy GG, Cleveland DW, Murphy DB (Eds.), Molecular biology of the cytoskeleton. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 175–184

    Google Scholar 

  • Bouck D, Bloom K (2005) The role of centromere-binding factor 3 (CBF3) in spindle stability, cytokinesis, and kinetochore attachment. Biochem Cell Biol 83:696–702

    Article  CAS  PubMed  Google Scholar 

  • Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219

    Article  CAS  PubMed  Google Scholar 

  • Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, Domingo E, Kanu N, Dewhurst SM, Gronroos E, Chew SK, Rowan AJ, Schenk A, Sheffer M, Howell M, Kschischo M, Behrens A, Helleday T, Bartek J, Tomlinson IP, Swanton C (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494:492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camahort R, Shivaraju M, Mattingly M, Li B, Nakanishi S, Zhu D, Shilatifard A, Workman JL, Gerton JL (2009) Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35:794–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers AL, Ormerod G, Durley SC, Sing TL, Brown GW, Kent NA, Downs JA (2012) The INO80 chromatin remodeling complex prevents polyploidy and maintains normal chromatin structure at centromeres. Genes Dev 26:2590–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M (2000) The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 20:7037–7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho US, Harrison SC (2012) Ndc10 is a platform for inner kinetochore assembly in budding yeast. Nat Struct Mol Biol 19:48–55

    Article  CAS  Google Scholar 

  • Cohen S, Segal D (2009) Extrachromosomal circular DNA in eukaryotes: possible involvement in the plasticity of tandem repeats. Cytogenet Genome Res 124:327–338

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Yacobi K, Segal D (2003) Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res 13:1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole HA, Howard BH, Clark DJ (2011) The centromeric nucleosome of budding yeast is perfectly positioned and covers the entire centromere. Proc Natl Acad Sci U S A 108:12687–12692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, Wang Q, Karaca E, Chiarle R, Skrzypczak M, Ginalski K, Pasero P, Rowicka M, Dikic I (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10:361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Li W, Tjong H, Hao S, Zhou Y, Li Q, Chen L, Zhu B, Alber F, Zhou XJ (2016) Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities. Nat Commun 7:11549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalal Y, Wang H, Lindsay S, Henikoff S (2007) Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol 5:e218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Cian A, Praly E, Ding F, Singh V, Lavelle C, Le Cam E, Croquette V, Pietrement O, Bensimon D (2012) ATP-independent cooperative binding of yeast Isw1a to bare and nucleosomal DNA. PLoS ONE 7:e31845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dechassa ML, Wyns K, Li M, Hall MA, Wang MD, Luger K (2011) Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes. Nat Commun 2:313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz-Ingelmo O, Martinez-Garcia B, Segura J, Valdes A, Roca J (2015) DNA topology and global architecture of point centromeres. Cell Rep 13:667–677

    Article  CAS  PubMed  Google Scholar 

  • Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS (2010) A three-dimensional model of the yeast genome. Nature 465:363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand-Dubief M, Will WR, Petrini E, Theodorou D, Harris RR, Crawford MR, Paszkiewicz K, Krueger F, Correra RM, Vetter AT, Miller JR, Kent NA, Varga-Weisz P (2012) SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae. PLoS Genet 8:e1002974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earnshaw WC, Allshire RC, Black BE, Bloom K, Brinkley BR, Brown W, Cheeseman IM, Choo KH, Copenhaver GP, Deluca JG, Desai A, Diekmann S, Erhardt S, Fitzgerald-Hayes M, Foltz D, Fukagawa T, Gassmann R, Gerlich DW, Glover DM, Gorbsky GJ, Harrison SC, Heun P, Hirota T, Jansen LE, Karpen G, Kops GJ, Lampson MA, Lens SM, Losada A, Luger K, Maiato H, Maddox PS, Margolis RL, Masumoto H, McAinsh AD, Mellone BG, Meraldi P, Musacchio A, Oegema K, O’Neill RJ, Salmon ED, Scott KC, Straight AF, Stukenberg PT, Sullivan BA, Sullivan KF, Sunkel CE, Swedlow JR, Walczak CE, Warburton PE, Westermann S, Willard HF, Wordeman L, Yanagida M, Yen TJ, Yoda K, Cleveland DW (2013) Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res 21:101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards NS, Murray AW (2005) Identification of xenopus CENP-A and an associated centromeric DNA repeat. Mol Biol Cell 16:1800–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erliandri I, Fu H, Nakano M, Kim JH, Miga KH, Liskovykh M, Earnshaw WC, Masumoto H, Kouprina N, Aladjem MI, Larionov V (2014) Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome. Nucleic Acids Res 42:11502–11516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errico A, Aze A, Costanzo V (2014) Mta2 promotes Tipin-dependent maintenance of replication fork integrity. Cell Cycle 13:2120–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espelin CW, Kaplan KB, Sorger PK (1997) Probing the architecture of a simple kinetochore using DNA-protein crosslinking. J Cell Biol 139:1383–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espelin CW, Simons KT, Harrison SC, Sorger PK (2003) Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol Biol Cell 14:4557–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fachinetti D, Han JS, McMahon MA, Ly P, Abdullah A, Wong AJ, Cleveland DW (2015) DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev Cell 33:314–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernius J, Hardwick KG (2007) Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis. PLoS Genet 3:e213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forsburg SL (2013) The CINs of the centromere. Biochem Soc Trans 41:1706–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk M, Hegemann JH, Philippsen P (1989) Chromatin digestion with restriction endonucleases reveals 150–160 bp of protected DNA in the centromere of chromosome XIV in Saccharomyces cerevisiae. Mol Gen Genet 219:153–160

    Article  CAS  PubMed  Google Scholar 

  • Furuyama T, Henikoff S (2009) Centromeric nucleosomes induce positive DNA supercoils. Cell 138:104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganem NJ, Pellman D (2012) Linking abnormal mitosis to the acquisition of DNA damage. J Cell Biol 199:871–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkikopoulos T, Singh V, Tsui K, Awad S, Renshaw MJ, Scholfield P, Barton GJ, Nislow C, Tanaka TU, Owen-Hughes T (2011) The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J 30:1919–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goloborodko A, Imakaev MV, Marko JF, Mirny L (2016a) Compaction and segregation of sister chromatids via active loop extrusion. Elife 5:e14864

    Google Scholar 

  • Goloborodko A, Marko JF, Mirny LA (2016b) Chromosome compaction by active loop extrusion. Biophys J 110:2162–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granick S, Rubinstein M (2004) Polymers: a multitude of macromolecules. Nat Mater 3:586–587

    Article  CAS  PubMed  Google Scholar 

  • Guerrero AA, Gamero MC, Trachana V, Futterer A, Pacios-Bras C, Diaz-Concha NP, Cigudosa JC, Martinez AC, van Wely KH (2010) Centromere-localized breaks indicate the generation of DNA damage by the mitotic spindle. Proc Nat Acad Sci U S A 107:4159–4164

    Article  CAS  Google Scholar 

  • Guse A, Carroll CW, Moree B, Fuller CJ, Straight AF (2011) In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 477:354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haase J, Mishra PK, Stephens A, Haggerty R, Quammen C, Taylor RM 2nd, Yeh E, Basrai MA, Bloom K (2013) A 3D map of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone. Curr Biol 23:1939–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris B, Bose T, Lee KK, Wang F, Lu S, Ross RT, Zhang Y, French SL, Beyer AL, Slaughter BD, Unruh JR, Gerton JL (2014) Cohesion promotes nucleolar structure and function. Mol Biol Cell 25:337–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasson D, Panchenko T, Salimian KJ, Salman MU, Sekulic N, Alonso A, Warburton PE, Black BE (2013) The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat Struct Mol Biol 20:687–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Zhang S, Wang D, Hochwagen A, Li F (2016) Condensin promotes position effects within tandem dna repeats via the rits complex. Cell reports 14:1018–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidinger-Pauli JM, Mert O, Davenport C, Guacci V, Koshland D (2010) Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr Biol 20:957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henikoff S, Ramachandran S, Krassovsky K, Bryson TD, Codomo CA, Brogaard K, Widom J, Wang JP, Henikoff JG (2014) The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo. Elife 3:e01861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heus JJ, Bloom KS, Zonneveld BJ, Steensma HY, Van den Berg JA (1993a) Chromatin structures of Kluyveromyces lactis centromeres in K. lactis and Saccharomyces cerevisiae. Chromosoma 102:660–667

    Article  CAS  PubMed  Google Scholar 

  • Heus JJ, Zonneveld BJ, de Steensma HY, van den Berg JA (1993b) The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol Gen Genet 236:355–362

    CAS  PubMed  Google Scholar 

  • Hirano T (2012) Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 26:1659–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ (2015) Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Petela N, Kurze A, Chan KL, Chapard C, Nasmyth K (2015) Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq. Nucleic Acids Res 43:e132

    PubMed  PubMed Central  Google Scholar 

  • Indjeian VB, Murray AW (2007) Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle. Curr Biol 17:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Jayaram M, Ma CH, Kachroo AH, Rowley PA, Guga P, Fan HF, Voziyanov Y (2015) An overview of tyrosine site-specific recombination: from an Flp perspective. Microbiol Spectr 3

    Google Scholar 

  • Jonstrup AT, Thomsen T, Wang Y, Knudsen BR, Koch J, Andersen AH (2008) Hairpin structures formed by alpha satellite DNA of human centromeres are cleaved by human topoisomerase IIalpha. Nucleic Acid Res 36:6165–6174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keith KC, Baker RE, Chen Y, Harris K, Stoler S, Fitzgerald-Hayes M (1999) Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol Cell Biol 19:6130–6139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch J (2000) Neocentromeres and alpha satellite: a proposed structural code for functional human centromere DNA. Hum Mol Genet 9:149–154

    Article  CAS  PubMed  Google Scholar 

  • Kouprina N, Earnshaw WC, Masumoto H, Larionov V (2013) A new generation of human artificial chromosomes for functional genomics and gene therapy. Cell Mol Life Sci 70:1135–1148

    Article  CAS  PubMed  Google Scholar 

  • Krassovsky K, Henikoff JG, Henikoff S (2012) Tripartite organization of centromeric chromatin in budding yeast. Proc Natl Acad Sci U S A 109:243–248

    Article  CAS  PubMed  Google Scholar 

  • Laha S, Das SP, Hajra S, Sanyal K, Sinha P (2011) Functional characterization of the Saccharomyces cerevisiae protein Chl1 reveals the role of sister chromatid cohesion in the maintenance of spindle length during S-phase arrest. BMC Genet 12:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrimore J, Bloom KS, Salmon ED (2011) Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J Cell Biol 195:573–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrimore J, Vasquez PA, Falvo MR, Taylor RM 2nd, Vicci L, Yeh E, Forest MG, Bloom K (2015) DNA loops generate intracentromere tension in mitosis. J Cell Biol 210:553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrimore J, Aicher JK, Hahn P, Fulp A, Kompa B, Vicci L, Falvo M, Taylor RM 2nd, Bloom K (2016) ChromoShake: a chromosome dynamics simulator reveals that chromatin loops stiffen centromeric chromatin. Mol Biol Cell 27:153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lezzi M, Gilbert LI (1970) Differential effects of K+ and Na+ on specific bands of isolated polytene chromosomes of Chironomus tentans. J Cell Sci 6:615–627

    CAS  PubMed  Google Scholar 

  • Liu Y, Nielsen CF, Yao Q, Hickson ID (2014) The origins and processing of ultra fine anaphase DNA bridges. Curr Opin Genet Dev 26:1–5

    Article  PubMed  CAS  Google Scholar 

  • Logsdon GA, Barrey EJ, Bassett EA, DeNizio JE, Guo LY, Panchenko T, Dawicki-McKenna JM, Heun P, Black BE (2015) Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. J Cell Biol 208:521–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magidson V, He J, Ault JG, O’Connell CB, Yang N, Tikhonenko I, McEwen BF, Sui H, Khodjakov A (2016) Unattached kinetochores rather than intrakinetochore tension arrest mitosis in taxol-treated cells. J Cell Biol 212:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez AC, van Wely KH (2011) Centromere fission, not telomere erosion, triggers chromosomal instability in human carcinomas. Carcinogenesis 32:796–803

    Article  CAS  Google Scholar 

  • McFarlane RJ, Humphrey TC (2010) A role for recombination in centromere function. Trends Genet 26:209–213

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Moreau JL, Lee M, Mahachi N, Vary J, Mellor J, Tsukiyama T, Goding CR (2003) Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. Mol Cell 11:1609–1620

    Article  CAS  PubMed  Google Scholar 

  • Mythreye K, Bloom KS (2003) Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J Cell Biol 160:833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagome Y, Abe T, Misawa S, Takeshita T, Iinuma K (1984) The “loss” of centromeres from chromosomes of aged women. Am J Hum Genet 36:398–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487

    Article  CAS  Google Scholar 

  • Panyukov S, Zhulina EB, Sheiko SS, Randall GC, Brock J, Rubinstein M (2009a) Tension amplification in molecular brushes in solutions and on substrates (dagger). J Phys Chem B 113:3750

    Google Scholar 

  • Panyukov SV, Sheiko SS, Rubinstein M (2009b) Amplification of tension in branched macromolecules. Phys Rev Lett 102:148301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol and Mol Biol Rev 63:349–404

    CAS  Google Scholar 

  • Paques F, Leung WY, Haber JE (1998) Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol Cell Biol 18:2045–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson CG, Maddox PS, Zarzar TR, Salmon ED, Bloom K (2003) Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics. Mol Biol Cell 14:4181–4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perriches T, Singleton MR (2012) Structure of yeast kinetochore Ndc10 DNA-binding domain reveals unexpected evolutionary relationship to tyrosine recombinases. J Biol Chem 287:5173–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrasanta LI, Thrower D, Hsieh W, Rao S, Stemmann O, Lechner J, Carbon J, Hansma H (1999) Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. Proc Natl Acad Sci U S A 96:3757–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell ID, Grancell AS, Sorger PK (1999) The unstable F-box protein p58-Ctf13 forms the structural core of the CBF3 kinetochore complex. J Cell Biol 145:933–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saksouk N, Barth TK, Ziegler-Birling C, Olova N, Nowak A, Rey E, Mateos-Langerak J, Urbach S, Reik W, Torres-Padilla ME, Imhof A, Dejardin J, Simboeck E (2014) Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol Cell 56:580–594

    Article  CAS  PubMed  Google Scholar 

  • Samoshkin A, Arnaoutov A, Jansen LE, Ouspenski I, Dye L, Karpova T, McNally J, Dasso M, Cleveland DW, Strunnikov A (2009) Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation. PLoS ONE 4:e6831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santaguida S, Amon A (2015) Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol 16:473–485

    Article  CAS  PubMed  Google Scholar 

  • Saunders M, Fitzgerald-Hayes M, Bloom K (1988) Chromatin structure of altered yeast centromeres. Proc Natl Acad Sci U S A 85:175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaraju M, Unruh JR, Slaughter BD, Mattingly M, Berman J, Gerton JL (2012) Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast. Cell 150:304–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simi S, Simili M, Bonatti S, Campagna M, Abbondandolo A (1998) Fragile sites at the centromere of Chinese hamster chromosomes: a possible mechanism of chromosome loss. Mutat Res 397:239–246

    Article  CAS  PubMed  Google Scholar 

  • Snider CE, Stephens AD, Kirkland JG, Hamdani O, Kamakaka RT, Bloom K (2014) Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis. J Cell Biol 207

    Google Scholar 

  • Stephens AD, Haase J, Vicci L, Taylor RM 2nd, Bloom K (2011) Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J Cell Biol 193:1167–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens AD, Haggerty RA, Vasquez PA, Vicci L, Snider CE, Shi F, Quammen C, Mullins C, Haase J, Taylor RM 2nd, Verdaasdonk JS, Falvo MR, Jin Y, Forest MG, Bloom K (2013a) Pericentric chromatin loops function as a nonlinear spring in mitotic force balance. J Cell Biol 200:757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens AD, Snider CE, Haase J, Haggerty RA, Vasquez PA, Forest MG, Bloom K (2013b) Individual pericentromeres display coordinated motion and stretching in the yeast spindle. J Cell Biol 203:407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stigler J, Camdere GO, Koshland DE, Greene EC (2016) Single-molecule imaging reveals a collapsed conformational state for dna-bound cohesin. Cell Rep 15:988–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Nishino T, Marko JF (2013) The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucleic Acids Res 41:6149–6160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsabar M, Haase J, Harrison B, Snider CE, Eldridge B, Kaminsky L, Hine RM, Haber JE, Bloom K (2016) A cohesin-based partitioning mechanism revealed upon transcriptional inactivation of centromere. PLoS Genet 12:e1006021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsouroula K, Furst A, Rogier M, Heyer V, Maglott-Roth A, Ferrand A, Reina-San-Martin B, Soutoglou E (2016) Temporal and spatial uncoupling of dna double strand break repair pathways within mammalian heterochromatin. Mol Cell 63:293–305

    Article  CAS  PubMed  Google Scholar 

  • Vasquez PA, Hult C, Adalsteinsson D, Lawrimore J, Forest MG, Bloom K (2016) Entropy gives rise to topologically associating domains. Nucleic Acids Res 44:5540–5549

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdaasdonk JS, Gardner R, Stephens AD, Yeh E, Bloom K (2012) Tension-dependent nucleosome remodeling at the pericentromere in yeast. Mol Biol Cell 23:2560–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Le TB, Lajoie BR, Dekker J, Laub MT, Rudner DZ (2015) Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 29:1661–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir JR, Faesen AC, Klare K, Petrovic A, Basilico F, Fischbock J, Pentakota S, Keller J, Pesenti ME, Pan D, Vogt D, Wohlgemuth S, Herzog F, Musacchio A (2016) Insights from biochemical reconstitution into the architecture of human kinetochores. Nature 537:249–253

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H, Wei D, Dahan M, Wu C (2014) Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. Elife 3:e02203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao H, Mizuguchi G, Wisniewski J, Huang Y, Wei D, Wu C (2011) Nonhistone Scm3 binds to AT-rich DNA to organize atypical centromeric nucleosome of budding yeast. Mol Cell 43:369–380

    Article  CAS  PubMed  Google Scholar 

  • Yeh E, Haase J, Paliulis LV, Joglekar A, Bond L, Bouck D, Salmon ED, Bloom KS (2008) Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr Biol 18:81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zebarjadian Y, King T, Fournier MJ, Clarke L, Carbon J (1999) Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol Cell Biol 19:7461–7472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry Bloom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bloom, K., Costanzo, V. (2017). Centromere Structure and Function. In: Black, B. (eds) Centromeres and Kinetochores. Progress in Molecular and Subcellular Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-58592-5_21

Download citation

Publish with us

Policies and ethics