Understanding Gendered Spaces Using Social Media Data

  • Aljoharah AlfayezEmail author
  • Zeyad AwwadEmail author
  • Cortni KerrEmail author
  • Najat AlrashedEmail author
  • Sarah WilliamsEmail author
  • Areej Al-WabilEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10283)


In Saudi Arabia, gender shapes cities in a way that is not commonly found in other cities due to Saudi Arabia’s imposed gender segregation. This segregation policy drives both genders to different areas of the city in different ways, influencing the emergence of gendered spaces. In this paper, we utilize social media data to better understand gendered spaces throughout the city of Riyadh. For our analysis, we developed an algorithm to perform gender annotation based on users’ first names. The method, optimized for English and Arabic language names, was applied to a sample of over 120,000 geotagged tweets between November 2016 and January 2017. The customer demographics of Foursquare venues were estimated based on the gender ratio of reviewers. Areas with a high degree of gender concentration in these datasets were used to identify gendered spaces. The correlation between gendered space identified from tweets and Foursquare venues was used to examine the link between amenities and gender-specific mobility habits in Riyadh. Throughout our analysis, we aim to identify ways in which government policies and the organization of businesses and services with similar customer demographics impact the mobility patterns of women and men and lead to the emergence of gendered spaces in Riyadh.


Gendered spaces Gender annotation Gender segregation Social media Foursquare Twitter Urban planning 


  1. 1.
    Uteng, T.: Gender and mobility in the developing world. World development report, 7778105-1299699968583 (2012)Google Scholar
  2. 2.
    Aldalbahi, M., Walker, G.: Riyadh transportation history and developing vision. Procedia-Soc. Behav. Sci. 216, 163–171 (2016)CrossRefGoogle Scholar
  3. 3.
    Sandercock, L., Forsyth, A.: A gender agenda: new directions for planning theory. J. Am. Plann. Assoc. 58(1), 49–59 (1992). doi: 10.1080/01944369208975534 CrossRefGoogle Scholar
  4. 4.
    Spain, D.: Gendered spaces and women’s status. Sociol. Theor. 11(2), 137 (1993). doi: 10.2307/202139 CrossRefGoogle Scholar
  5. 5.
    Hanson, S.: Gender and mobility: new approaches for informing sustainability. Gend. Place Cult. 17(1), 5–23 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    McDowell, L.: Towards an understanding of the gender division of urban space. Environ. Plann. D Soc. Space 1(1), 59–72 (1983)CrossRefGoogle Scholar
  7. 7.
    Spain, D.: Gendered Spaces. University of North Carolina Press, Chapel Hill (1992)Google Scholar
  8. 8.
    Loukaitou-Sideris, A.: A gendered view of mobility and transport: next steps and future directions. Town Plann. Rev. 87(5), 547–565 (2016)CrossRefGoogle Scholar
  9. 9.
    Crane, R.: Is there a quiet revolution in women’s travel? Revisiting the gender gap in commuting. J. Am. Plann. Assoc. 73(3), 298–316 (2007)CrossRefGoogle Scholar
  10. 10.
    Law, R.: Beyond “women and transport”: towards new geographies of gender and daily mobility. Prog. Hum. Geogr. 23(4), 567–588 (1999)CrossRefGoogle Scholar
  11. 11.
    Cresswell, T., Uteng, T.P.: Gendered mobilities: towards an holistic understanding. Gendered Mobilities, pp. 1–12. Aldershot, England (2008)Google Scholar
  12. 12. Saudi Arabia social media statistics 2016 - official GMI blog (2017). Accessed 27 Feb 2017
  13. 13.
    Semiocast: Semiocast—Geolocation of Twitter users, July 2012. Accessed 27 Feb 2017
  14. 14.
    Liu, W., Al Zamal, F., Ruths, D.: Using social media to infer gender composition of commuter populations. In: Proceedings of the When the City Meets the Citizen Workshop, The International Conference on Weblogs and Social Media, May 2012Google Scholar
  15. 15.
    Bergsma, S., Dredze, M., Van Durme, B., Wilson, T., Yarowsky, D.: Broadly improving user classification via communication-based name and location clustering on Twitter. In: HLT-NAACL, pp. 1010–1019 (2013)Google Scholar
  16. 16.
    Ciot, M., Sonderegger, M., Ruths, D.: Gender inference of Twitter users in non-english contexts. In: EMNLP, pp. 1136–1145, October 2013Google Scholar
  17. 17.
    Al Zamal, F., Liu, W., Ruths, D.: Homophily and latent attribute inference: inferring latent attributes of Twitter users from neighbors. In: ICWSM, p. 270 (2012)Google Scholar
  18. 18.
    Culotta, A., Kumar, N.R., Cutler, J.: Predicting Twitter user demographics using distant supervision from website traffic data. J. Artif. Intell. Res. (JAIR) 55, 389–408 (2016)Google Scholar
  19. 19.
    Mislove, A., Lehmann, S., Ahn, Y.Y., Onnela, J.P., Rosenquist, J.N.: Understanding the demographics of Twitter users. In: ICWSM, vol. 11, p. 5 (2011)Google Scholar
  20. 20.
    Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating gender on Twitter. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, pp. 1301–1309, July 2011Google Scholar
  21. 21.
    Liu, W., Ruths, D.: What’s in a name? Using first names as features for gender inference in Twitter. In: AAAI Spring Symposium: Analyzing Microtext, vol. 13, p. 1, March 2013Google Scholar
  22. 22.
    Zafarani, R., Tang, L., Liu, H.: User identification across social media. ACM Trans. Knowl. Discov. Data (TKDD) 10(2), 16 (2015)Google Scholar
  23. 23.
    Novak, J., Raghavan, P., Tomkins, A.: Anti-aliasing on the web. In: Proceedings of the 13th International Conference on World Wide Web, pp. 30–39. ACM, May 2004Google Scholar
  24. 24.
    Campbell, M.: Behind the name: meaning of names, baby name meanings (2017). Accessed 27 Feb 2017
  25. 25.
    Heil, B., Piskorski, M.: New Twitter research: men follow men and nobody tweets. Harvard Bus. Rev. 1, 2009 (2009)Google Scholar
  26. 26.
    Long, J.: ‘There’s no place like home’?: domestic life, gendered space and online access. In: Proceedings of the International Symposium on Women and ICT: Creating Global Transformation, p. 12. ACM, June 2005Google Scholar
  27. 27.
    alOwisheq, A., alHumoud, S., alTwairesh, N., alBuhairi, T.: Arabic sentiment analysis resources: a survey. In: Meiselwitz, G. (ed.) SCSM 2016. LNCS, vol. 9742, pp. 267–278. Springer, Cham (2016). doi: 10.1007/978-3-319-39910-2_25 CrossRefGoogle Scholar
  28. 28.
    Varinksy, D.: Saudi Arabia’s Riyadh metro will be largest urban-transit system ever built from scratch. Accessed 20 Feb 2017, 20 May 2016
  29. 29.
    Chodrow, P.S., Al-Awwad, Z., Jiang, S., González, M.C.: Demand and congestion in multiplex transportation networks. PLoS ONE 11(9), e0161738 (2016). doi: 10.1371/journal.pone.0161738 CrossRefGoogle Scholar
  30. 30.
    Beasley, K.: For Saudi women, new subway will mean more than a cool ride. Accessed 20 Feb 2017, (n.d.)
  31. 31.
    Kirk, M.: What a new metro in Saudi Arabia will mean for women. Accessed 20 Feb 2017, 7 Feb 2017
  32. 32.
    Winter, C.: For women, saudi arabia’s new metro may mean greater mobility. Accessed 16 Aug 2013
  33. 33.
    Asmahan Alghamdi: المترو».. المرأة تنتظره لأسبابها الخاصة. Accessed 24 July 2013

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Complex Engineering Systems (CCES)King Abdulaziz City for Science and Technology (KACST)RiyadhSaudi Arabia
  2. 2.MITCambridgeUSA
  3. 3.Civic Data Design LabMITCambridgeUSA

Personalised recommendations