Investigating the Relationship Between Trust and Sentiment Agreement in Arab Twitter Users

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10283)


Arab twitter users are rapidly increasing, at the same time the social and political landscape of the Arab world is rapidly changing. Twitter has been used as a lens to examine relationships between society members which is assumed to reflect the real world. There exist several methods to estimate Trust between users on twitter, however only a few have taken the context and sentiment into consideration. We propose a research methodology framework for investigating the relationship between trust and sentiment agreement on twitter, and explain the framework by applying it to a use case from Saudi Arabia.


Sentiment analysis Arabic sentiment analysis Trust SNA 



This work was partially funded by Deanship of Scientific Research at Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia on 2015 with grant number 360911.


  1. 1.
    Salem, F.: The Arab Social Media Report 2017: Social Media and the Internet of Things: Towards Data-Driven Policymaking in the Arab World, vol. 7. MBR School of Government, Dubai (2017)Google Scholar
  2. 2.
    Sherchan, W., Nepal, S., Paris, C.: A survey of trust in social networks. ACM Comput. Surv. (CSUR) 45(4), 1–33 (2013)CrossRefGoogle Scholar
  3. 3.
    Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Al-Twairesh, N., Al-Khalifa, H., Al-Salman, A.: Subjectivity and sentiment analysis of Arabic: trends and challenges. In: 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA). IEEE (2014)Google Scholar
  5. 5.
    Alhumoud, S., Altuwaijri, M., Albuhairi, T., Alohaideb, W.: Survey on Arabic Sentiment Analysis in Twitter. Int. Sci. Index 9(1), 364–368 (2015)Google Scholar
  6. 6.
    AlOwisheq, A., AlHumoud, S., AlTwairesh, N., AlBuhairi, T.: Arabic sentiment analysis resources: a survey. In: Meiselwitz, G. (ed.) SCSM 2016. LNCS, vol. 9742, pp. 267–278. Springer, Cham (2016). doi: 10.1007/978-3-319-39910-2_25 CrossRefGoogle Scholar
  7. 7.
    Adali, S., Escriva, R., Goldberg, M.K., Hayvanovych, M., Magdon-Ismail, M., Szymanski, B.K., Wallace, W.A., Williams, G.: Measuring behavioral trust in social networks. In: 2010 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 150–152. IEEE (2010)Google Scholar
  8. 8.
    Lumbreras, A., Gavalda, R.: Applying trust metrics based on user interactions to recommendation in social networks. In: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012, pp. 1159–1164. IEEE Computer Society (2012)Google Scholar
  9. 9.
    Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management in p2p networks. In: Proceedings of the 12th International Conference on World Wide Web, pp. 640–651. ACM (2003)Google Scholar
  10. 10.
    Boertjes, E., Gerrits, B., Kooij, R., Maanen, P.-P., Raaijmakers, S., Wit, J.: Towards a social media-based model of trust and its application. In: Hercheui, M.D., Whitehouse, D., McIver, W., Phahlamohlaka, J. (eds.) HCC 2012. IAICT, vol. 386, pp. 250–263. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33332-3_23 CrossRefGoogle Scholar
  11. 11.
    Sameh, A.: A Twitter analytic tool to measure opinion, influence and trust. J. Industr. Intell. Inf. 1(1), 37–45 (2013) Google Scholar
  12. 12.
    Smith, M.A., Shneiderman, B., Milic-Frayling, N., Rodrigues, E.M., Barash, V., Dunne, C., Capone, T., Perer, A., Gleave, E.: Analyzing (social media) networks with NodeXL. In: Proceedings of the Fourth International Conference on Communities and Technologies, pp. 255–264. ACM (2009)Google Scholar
  13. 13.
    Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we RT? In: Proceedings of the First Workshop on Social Media Analytics, pp. 71–79. ACM (2010)Google Scholar
  14. 14.
    Tavakolifard, M., Almeroth, K.C., Gulla, J.A.: Does social contact matter? Modelling the hidden web of trust underlying twitter. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 981–988. ACM (2013)Google Scholar
  15. 15.
    Golbeck, J.: Combining provenance with trust in social networks for semantic web content filtering. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 101–108. Springer, Heidelberg (2006). doi: 10.1007/11890850_12 CrossRefGoogle Scholar
  16. 16.
    Zhao, L., Hua, T., Li, C.-T., Chen, R.: A topic-focused trust model for Twitter. Comput. Commun. 76, 1–11 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Science DepartmentAl-Imam Muhammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
  2. 2.Information Technology DepartmentKing Saud UniversityRiyadhSaudi Arabia
  3. 3.ECS, University of SouthamptonSouthamptonUK
  4. 4.Computer Science DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Computer Science DepartmentJazan UniversityJazanSaudi Arabia
  6. 6.Information Management DepartmentAl-Imam Muhammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia

Personalised recommendations