‘Industrie 4.0’ and an Aging Workforce – A Discussion from a Psychological and a Managerial Perspective

  • Matthias Schinner
  • André Calero ValdezEmail author
  • Elisabeth Noll
  • Anne Kathrin Schaar
  • Peter Letmathe
  • Martina Ziefle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10298)


The aging workforce is already impacting on companies, particularly those in countries of the industrialized Western world. Furthermore, Western companies are coming under the increasing influence of technological developments, such as ‘Industrie 4.0’, which are in the process of completely changing traditional working environments. In order to maintain their industrial competitiveness, companies need to synchronize these technological developments with their own organizational requirements and in particular with the requirements of an aging workforce. We show how different types of competencies may be categorized in order to enable a successful synchronization. In addition, we take a look at recent developments in the domain of ‘Industrie 4.0’ and derive future research areas for solving the challenges involved.


Complexity Industrie 4.0 Competence management Collaboration Communication Internet of Things 



The authors thank the German Research Council DFG for the friendly support of the research in the excellence cluster “Integrative Production Technology in High Wage Countries”.


  1. 1.
    World Health Organization, et al.: World report on ageing and health. World Health Organization, Geneva (2015)Google Scholar
  2. 2.
    Fornalczyk, A., Stompór-Świderska, J., Ślazyk-Sobol, M.: Age management within organizations-employees’ perceptions of the phenomenon - research report. J. Intercultural Manage. 7(3), 39–51 (2015)CrossRefGoogle Scholar
  3. 3.
    De Mauro, A., Greco, M., Grimaldi, M., Giannakopoulos, G., Sakas, D.P., Kyriaki-Manessi, D.: What is big data? A consensual definition and a review of key research topics. In: AIP Conference Proceedings, vol. 1644, pp. 97–104. AIP (2015)Google Scholar
  4. 4.
    Bauernhansl, T.: Die Vierte Industrielle Revolution – Der Weg in ein wertschaffendes Produktionsparadigma. In: Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B. (eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik, pp. 5–35. Springer, Wiesbaden (2014). doi: 10.1007/978-3-658-04682-8_1 CrossRefGoogle Scholar
  5. 5.
    Becker, K.-D.: Arbeit in der Industrie 4.0 – Erwartungen des Instituts für angewandte Arbeitswissenschaft e.V. In: Botthof, A., Hartmann, E.A. (eds.) Zukunft der Arbeit in Industrie 4.0, pp. 23–29. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-45915-7_3 CrossRefGoogle Scholar
  6. 6.
    Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17, 9–13 (2014)CrossRefGoogle Scholar
  7. 7.
    Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recommendations for Implementing the strategic initiative INDUSTRIE 4.0: securing the future of German manufacturing industry; Final report of the Industrie 4.0 working group. Forschungsunion (2013)Google Scholar
  8. 8.
    Broy, M.: Cyber-physical systems–Wissenschaftliche Herausforderungen bei der Entwicklung. In: Broy M. (ed.) Cyber-Physical Systems: Innovation Durch Software-Intensive Eingebettete Systeme. acatech DISKUTIERT (ACATECHDISK), pp. 17–31. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14901-6_2
  9. 9.
    Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work, and Think. Houghton Mifflin Harcourt, Boston (2013)Google Scholar
  10. 10.
    Hirsch-Kreinsen, H., ten Hompel, M.: Digitalisierung industrieller Arbeit: Entwicklungsperspektiven und Gestaltungsansätze. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0 Bd. 3, pp. 357–376. Springer, Berlin (2017). doi: 10.1007/978-3-662-53251-5_21
  11. 11.
    Hirsch-Kreinsen, H.: Einleitung: Digitalisierung industrieller Arbeit. In: Digitalisierung industrieller Arbeit, pp. 10–31. Nomos Verlagsgesellschaft mbH & Co. KG (2015)Google Scholar
  12. 12.
    Wehberg, G.: Big Data-Mustererkennung als Erfolgsfaktor der Logistik 4.0. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0 Bd. 3, pp. 377–392. Springer, Berlin (2017). doi: 10.1007/978-3-662-53251-5_92
  13. 13.
    Boyd, D., Crawford, K.: Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 15(5), 662–679 (2012)CrossRefGoogle Scholar
  14. 14.
    Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 363–369. IEEE (2008)Google Scholar
  15. 15.
    Geisberger, E., Broy, M.: agendaCPS: Integrierte Forschungsagenda Cyber-Physical Systems, vol. 1. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int. J. Mech. Ind. Sci. Eng. 8(1), 37–44 (2014)Google Scholar
  17. 17.
    Xia, F., Yang, L., Wang, L., Vinel, A.: Internet of things. Int. J. Commun Syst 25(9), 1101–1102 (2012)CrossRefGoogle Scholar
  18. 18.
    Schlick, J., Stephan, P., Zühlke, D.: Produktion 2020 - Auf dem Weg zur 4. Industriellen Revolution. Inf. Manage. Consult. 27(3), 26–34 (2012)Google Scholar
  19. 19.
    Krenz, P., Wulfsberg, J.P., Bruhns, F.L.: Unfold Collective Intelligence! Erschließung neuer Wertschöpfungspotenziale durch Entfaltung kollektiver Intelligenz. ZWF-Zeitschrift für Wirtschaftlichen Fabrikbetrieb 107, 152 (2012)CrossRefGoogle Scholar
  20. 20.
    Kölmel, B., Bulander, R., Dittmann, U., Schätter, A., Würtz, G.: Usability requirements for complex cyber-physical systems in a totally networked world. In: Camarinha-Matos, L.M., Afsarmanesh, H. (eds.) PRO-VE 2014. IFIP AICT, vol. 434, pp. 253–258. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44745-1_25 Google Scholar
  21. 21.
    Dworschak, B., Zaiser, H.: Competences for cyber-physical systems in manufacturing-first findings and scenarios. Procedia CIRP 25, 345–350 (2014)CrossRefGoogle Scholar
  22. 22.
    Golightly, D., D’Cruz, M., Patel, H., Pettitt, M., Sharples, S., Stedmon, A., Wilson, J.: Novel interaction styles, complex working contexts, and the role of usability. In: Evaluation of User Interaction, Usability of Complex Information Systems, pp. 281–304 (2011)Google Scholar
  23. 23.
    Letmathe, P., Schinner, M.: Competence management in the age of cyber physical systems. In: Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.) Industrial Internet of Things. SSWT, pp. 595–614. Springer, Cham (2017). doi: 10.1007/978-3-319-42559-7_25 CrossRefGoogle Scholar
  24. 24.
    Frey, B., Osborne, C.: The future of employment: how susceptible are jobs to computerisation? (2015)Google Scholar
  25. 25.
    Bonin, H., Gregory, T., Zierahn, U.: Übertragung der Studie von Frey/Osborne (2013) auf Deutschland. Technical report 57, ZEW Kurzexpertise (2015)Google Scholar
  26. 26.
    Dworschak, B., Zaiser, H., Martinetz, S., Windelband, L.: Logistics as a domain of application for the “Internet of Things” in the early identification initiative of the German Federal Ministry of Education and Research (BMBF). Technical report, Fraunhofer IAO (2013)Google Scholar
  27. 27.
    Gorecky, D., Schmitt, M., Loskyll, M.: Mensch-Maschine-Interaktion im Industrie 4.0-Zeitalter. In: Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B. (eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik, pp. 525–542. Springer, Wiesbaden (2014). doi: 10.1007/978-3-658-04682-8_26 CrossRefGoogle Scholar
  28. 28.
    Autor, D.H., Dorn, D.: The growth of low-skill service jobs and the polarization of the US labor market. Am. Econ. Rev. 103(5), 1553–1597 (2013)CrossRefGoogle Scholar
  29. 29.
    Voigt, S.: E-Mail-Kommunikation in Organisationen: eine explorative Studie zu individuellen Nutzungsstrategien. Reinhard Fischer, München (2003)Google Scholar
  30. 30.
    Mast, C.: Unternehmenskommunikation - Ein Leitfaden. 4. neue und erw. Auflage. Lucius & Lucius Verlagsgesellschaft mbH, Stuttgart (2010)Google Scholar
  31. 31.
    Jäckel, M., Würfel, A.M.: “Und sie mailten was sie tun”: Erfahrungen mit neuen Informations- und Kommunikationstechnologien in Unternehmen und Verwaltungen. Competence Center E-Business an der Univ., Trier (2004)Google Scholar
  32. 32.
    Rusch, G.: From Face-to-Face to Face-to-“Face”. Zehn Schritte von der mündlichen Kommunikation zum Cyberspace, Siegen (1998)Google Scholar
  33. 33.
    Franken, S.: Verhaltensorientierte Führung: Individuen - Gruppen - Organisationen. Gabler Verlag, Wiesbaden (2004)CrossRefGoogle Scholar
  34. 34.
    Colbert, A., Yee, N., George, G.: The digital workforce and the workplace of the future. Acad. Manage. J. 59(3), 731–739 (2016)CrossRefGoogle Scholar
  35. 35.
    Haas, M.R., Criscuolo, P., George, G.: Which problems to solve? Online knowledge sharing and attention allocation in organizations. Acad. Manag. J. 58(3), 680–711 (2015)CrossRefGoogle Scholar
  36. 36.
    Argote, L., McEvily, B., Reagans, R.: Managing knowledge in organizations: an integrative framework and review of emerging themes. Manage. Sci. 49(4), 571–582 (2003)CrossRefGoogle Scholar
  37. 37.
    Reagans, R., McEvily, B.: Network structure and knowledge transfer: the effects of cohesion and range. Adm. Sci. Q. 48(2), 240–267 (2003)CrossRefGoogle Scholar
  38. 38.
    Sambamurthy, V., Subramani, M.: Special issue on information technologies and knowledge management. MIS Q. 29(1), 1–7 (2005)Google Scholar
  39. 39.
    Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th Design Automation Conference, pp. 731–736. ACM (2010)Google Scholar
  40. 40.
    Geisberger, E., Cengarle, M., Keil, P., Niehaus, J., Thiel, C., Thönnißen-Fries, H.J.: Cyber-Physical Systems - Driving force for innovation in mobility, health, energy and production, acatech-Deutsche Akademie der Technikwissenschaften (2011)Google Scholar
  41. 41.
    Linke, A.: Management der Online-Kommunikation von Unternehmen: Steuerungsprozesse, Multi-Loop-Prozesse und Governance. Springer, Wiesbaden (2014)Google Scholar
  42. 42.
    Hirsch-Kreinsen, H.: Entwicklungsperspektiven von Produktionsarbeit. In: Botthof, A., Hartmann, E.A. (eds.) Zukunft der Arbeit in Industrie 4.0, pp. 89–98. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-45915-7_10 CrossRefGoogle Scholar
  43. 43.
    Basmer, S., Buxbaum-Conradi, S., Krenz, P., Redlich, T., Wulfsberg, J.P., Bruhns, F.L.: Open production: chances for social sustainability in manufacturing. Procedia CIRP 26, 46–51 (2015)CrossRefGoogle Scholar
  44. 44.
    Schuh, G., Potente, T., Varandani, R., Hausberg, C., Fränken, B.: Collaboration moves productivity to the next level. Procedia CIRP 17, 3–8 (2014)CrossRefGoogle Scholar
  45. 45.
    Moraal, D., Lorig, B., Schreiber, D., Azeez, U.: Ein Blick hinter die Kulissen der betrieblichen Weiterbildung in Deutschland. Daten und Fakten der nationalen CVTS3-Zusatzerhebung [Electronic Version]. BIBB Report 7(09), 1–12 (2009)Google Scholar
  46. 46.
    Meyer, G., Brünig, B., Nyhuis, P.: Employee competences in manufacturing companies-an expert survey. J. Manage. Devel. 34(8), 1004–1018 (2015)CrossRefGoogle Scholar
  47. 47.
    Oblinger, D., Oblinger, J.: Is it age or IT: First steps toward understanding the net generation. Educ. Net Gener. 2(1–2), 20 (2005)Google Scholar
  48. 48.
    Schieber, F.: Human factors and aging: Identifying and compensating for age-related deficits in sensory and cognitive function. In: Impact of Technology on Successful Aging, pp. 42–84 (2003)Google Scholar
  49. 49.
    Jakobs, E.M., Lehnen, K., Ziefle, M.: Alter und Technik - Eine Studie zur altersbezogenen Wahrnehmung und Gestaltung von Technik (2008)Google Scholar
  50. 50.
    Li, K.Z., Lindenberger, U.: Relations between aging sensory/sensorimotor and cognitive functions. Neurosci. Biobehav. Rev. 26(7), 777–783 (2002)CrossRefGoogle Scholar
  51. 51.
    Craik, F.I., Salthouse, T.A. (eds.): The Handbook of Aging and Cognition. Psychology Press, New York (2011)Google Scholar
  52. 52.
    Czaja, S.J., Charness, N., Fisk, A.D., Hertzog, C., Nair, S.N., Rogers, W.A., Sharit, J.: Factors predicting the use of technology: findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychol. Aging 21(2), 333 (2006)CrossRefGoogle Scholar
  53. 53.
    Arning, K., Ziefle, M.: Effects of age, cognitive, and personal factors on PDA menu navigation performance. Behav. Inf. Technol. 28(3), 251–268 (2009)CrossRefGoogle Scholar
  54. 54.
    Goble, D.J., Coxon, J.P., Wenderoth, N., Van Impe, A., Swinnen, S.P.: Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci. Biobehav. Rev. 33(3), 271–278 (2009)CrossRefGoogle Scholar
  55. 55.
    Lövdén, M., Ghisletta, P., Lindenberger, U.: Social participation attenuates decline in perceptual speed in old and very old age. Psychol. Aging 20(3), 423 (2005)CrossRefGoogle Scholar
  56. 56.
    Warr, P.: Age and job performance. In: Work and Aging: A European Perspective, pp. 309–322 (1995)Google Scholar
  57. 57.
    Charness, N., Campbell, J.I.: Acquiring skill at mental calculation in adulthood: a task decomposition. J. Exp. Psychol. Gen. 117(2), 115 (1988)CrossRefGoogle Scholar
  58. 58.
    Downing, R.E., Moore, J.L., Brown, S.W.: The effects and interaction of spatial visualization and domain expertise on information seeking. Comput. Hum. Behav. 21(2), 195–209 (2005)CrossRefGoogle Scholar
  59. 59.
    Alwin, D.F., McCammon, R.J.: Aging, cohorts, and verbal ability. J. Gerontol. Ser. B: Psychol. Sci. Soc. Sci. 56(3), S151–S161 (2001)CrossRefGoogle Scholar
  60. 60.
    Calero Valdez, A., Kathrin Schaar, A., Ziefle, M.: Personality influences on etiquette requirements for social media in the work context. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds.) SouthCHI 2013. LNCS, vol. 7946, pp. 427–446. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39062-3_27 CrossRefGoogle Scholar
  61. 61.
    Calero Valdez, A., Brell, J., Schaar, A.K., Ziefle, M.: The diversity of why - a meta-analytical study of usage motivation in enterprise social networks. Universal Access in the Information Society (accepted, 2017)Google Scholar
  62. 62.
    Calero Valdez, A., Schaar, A.K., Ziefle, M.: State of the (net) work address - developing criteria for applying social networking to the work environment. Work 41(Suppl. 1), 3459–3467 (2012)Google Scholar
  63. 63.
    Schaar, A.K., Calero Valdez, A., Ziefle, M.: The impact of user diversity on the willingness to disclose personal information in social network services. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds.) SouthCHI 2013. LNCS, vol. 7946, pp. 174–193. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39062-3_11 CrossRefGoogle Scholar
  64. 64.
    Schaar, A.K., Calero Valdez, A., Ziefle, M., Eraßme, D., Löcker, A.-K., Jakobs, E.-M.: Reasons for using social networks professionally. In: Meiselwitz, G. (ed.) SCSM 2014. LNCS, vol. 8531, pp. 385–396. Springer, Cham (2014). doi: 10.1007/978-3-319-07632-4_37 Google Scholar
  65. 65.
    Erpenbeck, J., von Rosenstiel, L.: Handbuch Kompetenzmessung: Erkennen, verstehen und bewerten von Kompetenzen in der betrieblichen, pädagogischen und psychologischen Praxis, 1st edn. Schäffer-Poeschel, Stuttgart (2007)Google Scholar
  66. 66.
    Reinhardt, K., North, K.: Transparency and transfer of individual competencies - a concept of integrative competence management. J. UCS 9(12), 1372–1380 (2003)Google Scholar
  67. 67.
    Wilkens, U., Sprafke, N., Nolte, A.: Vom Kompetenzmanagement zum Kompetenzcontrolling. Controlling 27(10), 534–540 (2015)CrossRefGoogle Scholar
  68. 68.
    North, K., Reinhardt, K., Sieber-Suter, B.: Kompetenzmanagement in der Praxis: Mitarbeiterkompetenzen systematisch identifizieren, nutzen und entwickeln Mit vielen Fallbeispielen. Springer, Heidelberg (2012)Google Scholar
  69. 69.
    Freiling, J.: A competence-based theory of the firm. Manage. Revue 15(1), 27–52 (2004)Google Scholar
  70. 70.
    Mills, J., Platts, K., Bourne, M., Richards, H.: Strategy and Performance - Competing Through Competencies. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  71. 71.
    Grote, S., Kauffeld, S., Billich, M., Frieling, E.: Implementierung eines Kompetenzmanagementsystems: Phasen, Vorgehen und Stolpersteine. In: Kompetenzmanagement-Grundlagen und Praxisbeispiele, pp. 33–58. Schäffer-Poeschel Verlag für Wirtschaft Steuern Recht, Stuttgart (2006)Google Scholar
  72. 72.
    Gerst, D.: Designing workplaces from a work organizational perspective by detlef gerst. In: Wiendahl, H.-P., Reichardt, J., Nyhuis, P. (eds.) Handbook Factory Planning and Design, pp. 169–195. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46391-8_7
  73. 73.
    Kauffeld, S.: Kompetenzen messen, bewerten, entwickeln: Ein prozessanalytischer Ansatz für Gruppen. Schäffer-Poeschel, Stuttgart (2011)Google Scholar
  74. 74.
    Nickolaus, R., Seeber, S.: Berufliche Kompetenzen: Modellierungen und diagnostische Verfahren. In: Handbuch berufspädagogischer Diagnostik, pp. 166–195. Beltz (2013)Google Scholar
  75. 75.
    Letmathe, P., Zielinski, M.: Determinants of feedback effectiveness in production planning. Int. J. Oper. Prod. Manage. 36(7), 825–848 (2016)CrossRefGoogle Scholar
  76. 76.
    Pentland, A.: The new science of building great teams. Harvard Bus. Rev. 90(4), 60–69 (2012)Google Scholar
  77. 77.
    Cillessen, A.H.: Sociometric Methods. Guilford Press, New York (2009)CrossRefGoogle Scholar
  78. 78.
    Peterson, R.S., Owens, P.D., Tetlock, P.E., Fan, E.T., Martorana, P.: Group dynamics in top management teams: groupthink, vigilance, and alternative models of organizational failure and success. Organ. Behav. Hum. Decis. Process. 73(2–3), 272–305 (1998)CrossRefGoogle Scholar
  79. 79.
    Norton, R.W.: Measurement of ambiguity tolerance. J. Pers. Assess. 39(6), 607–619 (1975)CrossRefGoogle Scholar
  80. 80.
    Schere, J.L.: Tolerance of ambiguity as a discriminating variable between entrepreneurs and managers. Acad. Manage. Proc. 1982(1), 404–408 (1982)CrossRefGoogle Scholar
  81. 81.
    Sagie, A., Elizur, D., Koslowsky, M.: Effect of participation in strategic and tactical decisions on acceptance of planned change. J. Soc. Psychol. 130(4), 459–465 (1990)CrossRefGoogle Scholar
  82. 82.
    Schulz von Thun, F.: Miteinander reden 1: Störungen und Klärungen. Allgemeine Psychologie der Kommunikation. Rowohlt Taschenbuch, Hamburg (2001)Google Scholar
  83. 83.
    Letmathe, P., Noll, E.: Ökonomische Bewertung von Kommunikationsflüssen am Beispiel von Führungsimpulsen. Controlling: Zeitschrift für erfolgsorientierte Unternehmensführung (accepted, 2017)Google Scholar
  84. 84.
    King, W.R., He, J.: A meta-analysis of the technology acceptance model. Inf. Manage. 43(6), 740–755 (2006)CrossRefGoogle Scholar
  85. 85.
    Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology (2012)Google Scholar
  86. 86.
    Oshlyansky, L., Cairns, P., Thimbleby, H.: Validating the Unified Theory of Acceptance and Use of Technology (UTAUT) tool cross-culturally. In: Proceedings of the 21st British HCI Group Annual Conference on People and Computers: HCI... but not as we know it-Volume 2, pp. 83–86. British Computer Society (2007)Google Scholar
  87. 87.
    Alagöz, F., Ziefle, M., Wilkowska, W., Valdez, A.C.: Openness to accept medical technology - a cultural view. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 151–170. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25364-5_14 CrossRefGoogle Scholar
  88. 88.
    Calero Valdez, A., Brauner, P., Ziefle, M.: Preparing production systems for the internet of things - the potential of socio-technical approaches in dealing with complexity. In: Competitive Manufacturing (COMA) (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Matthias Schinner
    • 1
  • André Calero Valdez
    • 2
    Email author
  • Elisabeth Noll
    • 1
  • Anne Kathrin Schaar
    • 2
  • Peter Letmathe
    • 1
  • Martina Ziefle
    • 2
  1. 1.Chair of Management AccountingRWTH Aachen UniversityAachenGermany
  2. 2.Human-Computer Interaction CenterRWTH Aachen UniversityAachenGermany

Personalised recommendations