Advertisement

A Sub-national CGE Model for the European Mediterranean Countries

  • Francesco Bosello
  • Gabriele StandardiEmail author
Chapter

Abstract

This chapter describes the methodology used to develop a Computable General Equilibrium model with sub-national detail for the Euro-Mediterranean area: Italy, France, Spain, Portugal and Greece. The main purpose of this exercise is to perform economic assessments of climate change impacts with a finer spatial resolution compared to that offered by standard CGE models and, in doing so, to increase the comparability of and the possibility to exchange information across economic and physical impact models. Indeed, aiming to represent the high spatial heterogeneity of climate drivers and environmental impacts, both climate models and physical process models (like e.g. land use, crop growth, flood risk models) are spatially detailed. This is not the case for macroeconomic models that typically feature large geo-political blocks or at best the country as the finest investigation units. Accordingly, when physical and economic models are interfaced to produce integrated assessments of climate change impacts, there is an unavoidable loss of richness both of input and output information. Developing a sub-national resolution for the economic analysis thus offers a first useful step to measure more accurately the economic consequences of climate change, to produce an information more relevant for local planners and businesses, and also to better capture the economic feedbacks between regions which can turn to be as important as the international ones. The study addresses conceptual and practical issues related to the regionalization process, and presents simple experiments aimed to test the robustness of the regionalized structure and understand the economic implications in terms of market integration.

Keywords

CGE models Regional economics 

JEL CODE

C68 D58 R11 R12 R13 

Notes

Acknowledgements

The research leading to these results has received funding from the Italian Ministry of Education, University and Research and the Italian Ministry of Environment, Land and Sea under the GEMINA project.

The authors are the only responsible for errors and omissions in this work.

References

  1. Aaheim, A., Dokken, T., Hochrainer, S., Hof, A., Jochem, E., Mechler, R., et al. (2010). National responsibilities for adaptation strategies: Lessons from four modelling frameworks. In M. Hulme & H. Neufeld (Eds.), Making climate change work for us: European perspectives on adaptation and mitigation strategies. Cambridge: Cambridge University Press.Google Scholar
  2. Armington, P. (1969). A theory of demand for products distinguished by place of production. IMF Staff Papers, 16(1), 159–178.CrossRefGoogle Scholar
  3. Bacharach, M. (1970). Biproportional matrices & input-output change. Number 16 in University of Cambridge Department of Applied Economics Monographs. Cambridge University Press.Google Scholar
  4. Bigano, A., Bosello, F., Roson, R., & Tol, R. (2008). Economy-wide impacts of climate change: A joint analysis for sea level rise and tourism. Mitigation and Adaptation Strategies for Global Change, 13(8).CrossRefGoogle Scholar
  5. Böhringer, C., Rutherford, T. F., & Tol, R. (2009). The EU 20/20/20 targets: An overview of the EMF22 assessment. Energy Economics, 31, 268–273.CrossRefGoogle Scholar
  6. Böhringer, C., Fisher, C., & Rosendahl, K. E. (2010). The global effects of subglobal climate policies. Resources for the Future Discussion Paper, pp. 10–48.Google Scholar
  7. Böhringer, C., Balistreri, E. J., & Rutherford, T. F. (2012). The role of border carbon adjustment in unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29). Energy Economics, 34, S97–S110.CrossRefGoogle Scholar
  8. Bonfiglio, A. (2008). Evaluating implications of agricultural policies in a rural region through a CGE analysis, No 328, Working Papers, Universita’ Politecnica delle Marche, Dipartimento di Scienze Economiche e Sociali.Google Scholar
  9. Bonfiglio, A., & Chelli, F. (2008). Assessing the behaviour of non-survey methods for constructing regional input-output tables through a Monte Carlo simulation. Economic Systems Research, 20(3), 243–258.CrossRefGoogle Scholar
  10. Bosello, F., Nicholls, R., Richards, J., Roson, R., & Tol, R. (2012). Economic impacts of climate change in Europe: Sea-level rise. Climatic Change, 112(1), 63–81. (Springer)CrossRefGoogle Scholar
  11. Brandsma, A., Kancs, D., Monfort, P., & Rillaers, A. (2015). RHOMOLO: A dynamic spatial general equilibrium model for assessing the impact of cohesion policy. Papers in Regional Science 94.  https://doi.org/10.1111/pirs.12162.CrossRefGoogle Scholar
  12. Cai, Y., & Arora, V. (2015). Disaggregating electricity generation technologies in CGE models: A revised technology bundle approach with an application to the U.S. Clean Power Plan. Applied Energy, 154(C), 543–555.CrossRefGoogle Scholar
  13. Canning, P., & Tsigas, M. (2000). Regionalism, federalism, and taxation: A food and farm perspective. Technical Bulletin No. 1882, Economic Research Services, U.S. Department of agriculture.Google Scholar
  14. Carrera, L., Standardi, G., Bosello, F., & Mysiak, Y. (2015). Assessing direct and indirect economic impacts of a flood event through the integration of spatial and computable general equilibrium modelling. Environmental Modelling and Software, 63, 109–122.CrossRefGoogle Scholar
  15. Chintrakarn, P., & Millimet, D. L. (2006). The environmental consequences of trade: Evidence from subnational trade flows. Journal of Environmental Economics and Management, 52(1), 430–453. (Elsevier).CrossRefGoogle Scholar
  16. Ciscar, J.-C., Iglesias, A., Feyen, L., Szabó, L., Van Regemorter, D., Amelung, B., et al. (2011). Physical and economic consequences of climate change in Europe. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2678–2683.CrossRefGoogle Scholar
  17. Darwin, R., & Tol, R. (2001). Estimates of the economic effects of sea level rise. Environmental & Resource Economics (European Association of Environmental and Resource Economists), 19(2), 113–129.Google Scholar
  18. Deming, W. E., & Stephan, F. F. (1940). On a least-squares adjustment of a sampled frequency table when the expected marginal totals are known. Annals of Mathematical Statistics, 11, 427–444.CrossRefGoogle Scholar
  19. Dixon, P., Rimmer, M., & Wittwer, G. (2012). USAGE-R51, a State-level Multi-regional CGE Model of the US Economy. https://www.gtap.agecon.purdue.edu/resources/download/5933.pdf.
  20. Dubé, J., & Lemelin, A. (2005). Estimation Expérimentale des Flux d’Echanges Interrégionaux par la Méthode de Minimisation de l’Entropie Croisée. Revue Canadienne des Sciences Régionales/Canadian Journal of Regional Science, 28(3), 513–534.Google Scholar
  21. European Commission. (2008). Package of implementation measures for the EU’s objectives on climate change and renewable energy for 2020. Commission Staff working document SEC (2008) 85 II.Google Scholar
  22. European Commission. (2010). Analysis of options to move beyond 20% greenhouse gas emission reductions and assessing the risk of carbon leakage. Commission Staff working document SEC (2010) 650.Google Scholar
  23. Eurostat. (2016). Eurostat database. http://ec.europa.eu/eurostat/web/nuts/overview.
  24. Eurostat. (2017). Economic accounts for agriculture. http://appsso.eurostat.ec.europa.eu/nui/show.do.
  25. Eboli, F., Parrado, R., & Roson, R. (2010). Climate change feedback on economic growth: Explorations with a dynamic general equilibrium model. Environment and Development Economics, 15(5), 515–533.CrossRefGoogle Scholar
  26. Hanoch, G. (1971). CRESH production functions. Econometrica, 39, 695–712.CrossRefGoogle Scholar
  27. Hellenic Statistical Authority. Gross value added by industry 2000–2015. http://www.statistics.gr/en/statistics/-/publication/SEL45/-.
  28. Hertel, T. W. (Ed.). (1997). Global trade analysis: Modeling and applications. Cambridge and New York: Cambridge University Press.Google Scholar
  29. Hertel, T. W., Lee, H., Rose, S., & Sohngen, B. (2009). Modelling land use related greenhouse gas sources and sinks and their mitigation potential. In T. W. Hertel, S. Rose, & R. Tol (Eds.), Economic analysis of land use in global climate change policy (Chapter 6). London and New York: Routledge.Google Scholar
  30. Horridge, M., & Wittwer, G. (2010). Bringing regional detail to a CGE model using census data. Spatial Economic Analysis, 5(2), 229–255.CrossRefGoogle Scholar
  31. INE Portugal. Gross value added (€) of Enterprises by Geographic localization (NUTS - 2002) and Economic activity (Subclass - CAE Rev. 3); Annual—Statistics Portugal, Integrated business accounts. http://censos.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0006560&contexto=pti&selTab=tab10.
  32. IPCC. (2014). In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (688 pp). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  33. ISTAT. Conti Economici Regionali. Anni 1995–2009. http://www.istat.it/it/archivio/12718.
  34. ISTAT. Agricoltura e Zootecnia. http://agri.istat.it/sag_is_pdwout/index.jsp.
  35. ISTAT. Valore Aggiunto ai Prezzi di Base dell’Agricoltura per Regione. Anni 1980–2011. http://www.istat.it/it/archivio/66513.
  36. Jansson, T. G., Kuiper, M. H., & Adenäuer, M. (2009). Linking CAPRI and GTAP. SEAMLESS report no. 39.Google Scholar
  37. Jean, S., & Laborde, D. (2004). The impact of multilateral liberalisation on European regions: A CGE assessment. CEPII Working Paper, No. 2004-20.Google Scholar
  38. Johansen, L. (1974). A multi-sectoral study of economic growth (2nd ed.). Amsterdam: North-Holland Publishing Company.Google Scholar
  39. Koks, E. E., Carrera, L., Jonkeren, O., Aerts, J. C. J. H., Husby, T. G., Thissen, M., et al. (2015). Regional disaster impact analysis: Comparing input-output and computable general equilibrium models. Nat. Hazards Earth Syst. Sci. Discuss., 3, 7053–7088.CrossRefGoogle Scholar
  40. Lee, H., Hertel, T. W., Rose, S., & Avetisyan, M. (2009). An integrated global land use database for CGE analysis of climate policy options. In T. W. Hertel, S. Rose, & R. Tol (Eds.), Economic analysis of land use in global climate change policy (Chapter 4). London and New York: Routledge.Google Scholar
  41. McCallum, J. (1995). National borders matter: Canada-U.S. regional trade patterns. American Economic Review, 85(3), 615–623.Google Scholar
  42. McDougall, R. (1999). Entropy theory and RAS are friends. GTAP Working Papers 300, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.Google Scholar
  43. Michetti, M., & Parrado, R. (2012). Improving land-use modelling within CGE to assess forest-based mitigation potential and costs. Working Paper 2012.19, Fondazione Eni Enrico Mattei.Google Scholar
  44. Miller, R. E., & Blair, P. D. (1985). Input-output analysis: Foundations and extensions. Englewood Cliffs, New Jersey: Prentice-Hall Inc.Google Scholar
  45. Narayanan, B., Aguiar, A., & McDougall, R. (2012) Global trade, assistance, and production: The GTAP 8 Data Base. Center for Global Trade Analysis, Purdue University.Google Scholar
  46. Pant, H. (2007). GTEM: Global trade and environment model. ABARE Technical Report. Canberra: Australian Bureau of Agricultural and Resource Economics and Sciences.Google Scholar
  47. Pérez-Blanco, C. D., Standardi, G., Mysiak, J., Parrado, R., & Gutiérrez-Martín, C. (2016). Incremental water charging in agriculture. A case study of the Regione Emilia Romagna in Italy. Environmental Modelling & Software (forthcoming).CrossRefGoogle Scholar
  48. Peter, M. W., Horridge, M., Meagher, G. A., Naqvi, F., & Parmenter, P. R. (1996). The theoretical structure of MONASH-MRF. Centre of Policy Studies/IMPACT Centre Working Papers op-85, Monash University, Centre of Policy Studies/IMPACT Centre.Google Scholar
  49. Potters, L., Conte, A., Kancs, D., & Thissen, M. (2014). Data needs for regional modelling. A description of the data used in support of RHOMOLO. JRC Publication No: JRC80845.Google Scholar
  50. Shoven, J. B., & Whalley, J. (1992). Applying general equilibrium. Cambridge University Press.Google Scholar
  51. Standardi, G., & Eboli F. (2015). Sea level rise in the Italian regions: A macro-economic assessment, Research Papers CMCC, RP0251.Google Scholar
  52. Standardi, G., Bosello, F., & Eboli, F. (2014). A sub-national CGE model for Italy, Working Papers 2014.04, Fondazione Eni Enrico Mattei.Google Scholar
  53. Yang, J., Huang, J., Li, N., Rozelle, S., & Martin, W. (2011). The impact of the Doha trade proposals on farmers’ incomes in China. Journal of Policy Modeling, 33(3), 439–452.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Euro-Mediterranean Centre on Climate Change (CMCC)VeniceItaly
  2. 2.University of MilanMilanItaly

Personalised recommendations