Advertisement

Management of Inconsistencies in Domain-Spanning Models – An Interactive Visualization Approach

  • Stefan FeldmannEmail author
  • Florian Hauer
  • Dorothea Pantförder
  • Frieder Pankratz
  • Gudrun Klinker
  • Birgit Vogel-Heuser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10273)

Abstract

The complexity of automated production systems increases steadily – especially due to the rising customer demand to manufacture individualized goods. To stay competitive, companies in this domain need to adapt their engineering to deliver machines and plants with higher quality in shorter time. Hence, to reduce design errors and identify problems already in early engineering stages, it is essential to ensure that the disparate engineering models – e.g., from mechanical, electrical and software engineering – are free from inconsistencies. This paper presents a concept for inter-model inconsistency management. In particular, the proposed concept provides an interactive visualization approach that captures the dependencies between the different engineering models explicitly and visualizes them to the involved stakeholders. By that, the location of and cause for inconsistencies can be identified more easily; dependencies between the different engineering disciplines can be visualized in a comprehensive manner.

Keywords

Model-based systems engineering Automated production systems Inconsistency management Semantic web technologies 

References

  1. 1.
    Apache Jena: Fuseki: serving RDF data over HTTP (2016). https://jena.apache.org/documentation/serving_data/
  2. 2.
    Basole, R.C., Qamar, A., Park, H., Paredis, C.J.J., McGinnis, L.F.: Visual analytics for early-phase complex engineered system design support. IEEE Comput. Graph. Appl. 35(2), 41–51 (2015)CrossRefGoogle Scholar
  3. 3.
    Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless model-based development: From isolated tools to integrated model engineering environments. Proc. IEEE 98(4), 526–545 (2010)CrossRefGoogle Scholar
  4. 4.
    Cockburn, A., Karlson, A., Bederson, B.B.: A review of overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv. 41(1), 2 (2009)Google Scholar
  5. 5.
    Eclipse Foundation: Eclipse Modeling Framework (2016). http://www.eclipse.org/modeling/emf/
  6. 6.
    Feldmann, S., Herzig, S.J.I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A., Lindemann, U., Krcmar, H., Paredis, C.J.J., Vogel-Heuser, B.: A comparison of inconsistency management approaches using a mechatronic manufacturing system design case study. In: IEEE International Conference on Automation Science and Engineering, Gothenburg, Sweden, pp. 158–165 (2015)Google Scholar
  7. 7.
    Feldmann, S., Herzig, S.J.I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A., Lindemann, U., Krcmar, H., Paredis, C.J.J., Vogel-Heuser, B.: Towards effective management of inconsistencies in model-based engineering of automated production systems. In: 15th IFAC Symposium on Information Control Problems in Manufacturing, Ottawa, Canada, pp. 916–923 (2015)Google Scholar
  8. 8.
    Friedl, M., Weingartner, L., Hehenberger, P., Scheidl, R.: Model dependency maps for transparent concurrent engineering processes. In: Proceedings of the 14th Mechatronics Forum International Conference, Mechatronics 2014, pp. 614–621 (2014)Google Scholar
  9. 9.
    Gausemeier, J., Giese, H., Schäfer, W., Axenath, B., Frank, U., Henkler, S., Pook, S., Tichy, M.: Towards the design of self-optimizing mechatronic systems: Consistency between domain-spanning and domain-specific models. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pp. 1141–1148 (2007)Google Scholar
  10. 10.
    Herzig, S., Qamar, A., Reichwein, A., Paredis, C.: A conceptual framework for consistency management in model-based systems engineering. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, DC, USA, pp. 1329–1339 (2011)Google Scholar
  11. 11.
    Hillairet, G.: EMF Triple (2016). https://github.com/ghillairet/emftriple
  12. 12.
    International Council on Systems Engineering: Systems engineering vision 2020. Technical Report INCOSE-TP-2004-004-02 (2007). http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_%03.pdf
  13. 13.
    Jossic, A., Fabro, M.D.D., Lerat, J., Bézivin, J., Jouault, F.: Model integration with model weaving: A case study in system architecture. In: 1st IEEE International Conference on Systems Engineering and Modeling, pp. 79–84 (2007)Google Scholar
  14. 14.
    Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging models with the epsilon merging language (EML). In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006). doi: 10.1007/11880240_16 CrossRefGoogle Scholar
  15. 15.
    Kovalenko, O., Serral, E., Sabou, M., Ekaputra, F.J., Winkler, D., Biffl, S.: Automating cross-disciplinary defect detection in multi-disciplinary engineering environments. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 238–249. Springer, Cham (2014). doi: 10.1007/978-3-319-13704-9_19 Google Scholar
  16. 16.
    Leung, Y.K., Apperley, M.D.: A review and taxonomy of distortion-oriented presentation techniques. ACM Trans. Comput. Hum. Interact. 1(2), 126–160 (1994)CrossRefGoogle Scholar
  17. 17.
    Nuseibeh, B., Easterbrook, S., Russo, A.: Leveraging inconsistency in software development. IEEE Comput. 33(4), 24–29 (2000)CrossRefGoogle Scholar
  18. 18.
    Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Comput. 39(2), 25–31 (2006)CrossRefGoogle Scholar
  19. 19.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: IEEE Symposium on Visual Languages (1996)Google Scholar
  20. 20.
    Smirnov, A.: GraphX (2016). https://github.com/panthernet/GraphX
  21. 21.
    Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering: Survey and open research issues. In: Handbook of Software Engineering & Knowledge Engineering: Fundamentals, vol. 1, pp. 329–380. World Scientific Publishing Co Pte. Ltd., Singapore (2001)Google Scholar
  22. 22.
    Vesse, R., Zettlemoyer, R., Ahmed, K., Moore, G., Pluskiewicz, T.: dotNetRDF (2016). http://dotnetrdf.org/
  23. 23.
    World Wide Web Consortium: SPARQL Protocol and RDF Query Language (SPARQL) 1.1 Query Language (2013). https://www.w3.org/TR/sparql11-query/
  24. 24.
    World Wide Web Consortium: SPARQL Protocol and RDF Query Language (SPARQL) 1.1 Update (2013). https://www.w3.org/TR/sparql11-update/
  25. 25.
    World Wide Web Consortium: Resource Description Framework (RDF) 1.1 Concepts and Abstract Syntax (2014). https://www.w3.org/TR/rdf11-concepts/

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stefan Feldmann
    • 1
    Email author
  • Florian Hauer
    • 2
  • Dorothea Pantförder
    • 1
  • Frieder Pankratz
    • 3
  • Gudrun Klinker
    • 3
  • Birgit Vogel-Heuser
    • 1
  1. 1.Institute of Automation and Information SystemsTechnical University of MunichMunichGermany
  2. 2.Chair of Software EngineeringTechnical University of MunichMunichGermany
  3. 3.Chair for Computer Aided Medical Procedures & Augmented RealityTechnical University of MunichMunichGermany

Personalised recommendations