Advertisement

High-Throughput Sequencing of the Paired Human Immunoglobulin Heavy and Light Chain Repertoire

  • Brandon DeKosky
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Currently existing immune repertoire sequencing technologies yield data on only one of the two chains of immune receptors [1, 2, 3]. Sequence analysis of VH:VL pairs is therefore currently performed by microtiter-well sorting of individual B cells followed by single-cell RT-PCR (scRT-PCR) and Sanger sequencing [3−10]; however at most a few hundred VH:VL pairs (a number dwarfed by the enormous size of the human antibody repertoire) are identified via scRT-PCR [6−9].

Keywords

Tetanus Toxoid Microwell Array Lithium Dodecyl Sulfate Gene Family Usage Light Chain Transcript 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wu X et al (2011) Focused EVOLUTION of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333:1593–1602CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fischer N (2011) Sequencing antibody repertoires: the next generation. MAbs 3:17–20CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wilson PC, Andrews SF (2012) Tools to therapeutically harness the human antibody response. Nat Rev Immunol 12:709–719CrossRefPubMedGoogle Scholar
  4. 4.
    Wardemann H et al (2003) Predominant autoantibody production by early human B cell precursors. Science 301:1374–1377CrossRefPubMedGoogle Scholar
  5. 5.
    Meijer P et al (2006) Isolation of human antibody repertoires with preservation of the natural heavy and light chain pairing. J Mol Biol 358:764–772CrossRefPubMedGoogle Scholar
  6. 6.
    Smith K et al (2009) Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4:372–384CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Frölich D et al (2010) Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. J Immunol 185:3103–3110CrossRefPubMedGoogle Scholar
  8. 8.
    Tanaka Y et al (2010) Single-cell analysis of T-cell receptor repertoire of HTLV-1 tax-specific cytotoxic T cells in allogeneic transplant recipients with adult T-cell Leukemia/Lymphoma. Cancer Res 70:6181–6192CrossRefPubMedGoogle Scholar
  9. 9.
    Scheid JF et al (2011) Differential regulation of self-reactivity discriminates between IgG(+) human circulating memory B cells and bone marrow plasma cells. Proc Natl Acad Sci USA 108:18044–18048CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li G-M et al (2012) Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc Natl Acad Sci USA 109:9047–9052CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sanchez-Freire V, Ebert AD, Kalisky T, Quake SR, Wu JC (2012) Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns. Nat Protoc 7:829–838CrossRefPubMedGoogle Scholar
  12. 12.
    Ogunniyi A, Story C, Papa E, Guillen E, Love J (2009) Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat Protoc 4:767–782CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lindström S, Hammond M, Brismar H, Andersson-Svahn H, Ahmadian A (2009) PCR amplification and genetic analysis in a microwell cell culturing chip. Lab Chip 9:3465–3471CrossRefPubMedGoogle Scholar
  14. 14.
    Tokimitsu Y et al (2007) Single lymphocyte analysis with a microwell array chip. Cytometry A 71:1003–1010CrossRefPubMedGoogle Scholar
  15. 15.
    Yamamura S et al (2005) Single-cell microarray for analyzing cellular response. Anal Chem 77:8050–8056CrossRefPubMedGoogle Scholar
  16. 16.
    Tajiri K et al (2007) Cell microarray analysis of antigen specific B cells: single cell analysis of antigen receptor expression and specificity. Cytometry A 71:961–967CrossRefPubMedGoogle Scholar
  17. 17.
    White AK et al (2011) High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci USA 108:13999–14004CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ippolito GC et al (2012) Antibody repertoires in humanized NOD-scid-IL2R gamma(null) mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse. PLoS ONE 7:e35497CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Glanville J et al (2011) Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc Natl Acad Sci USA 108:20066–20071CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sato S et al (2012) Proteomics-directed cloning of circulating antiviral human monoclonal antibodies. Nat Biotech 30:1039–1043CrossRefGoogle Scholar
  21. 21.
    Cheung WC et al (2012) A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat Biotech 30:447–452CrossRefGoogle Scholar
  22. 22.
    Wrammert J et al (2008) Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453:667–671CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Scheid JF et al (2011) Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:1633–1637CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    DeKosky BJ et al (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotech 31:166–169CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Chemical and Petroleum Engineering, Department of Pharmaceutical ChemistryThe University of KansasLawrenceUSA

Personalised recommendations