Deposition of Metals on the Skin and Quantification of Skin Exposure

  • Klara Midander


The metal skin dose is a key factor in determining potential adverse health effects such as contact allergy, as well as systemic effects due to metal exposure via the skin route. Skin deposition of metal is described by characteristics of exposure such as the frequency and duration of contact with metallic objects or metal-containing products. The condition of the skin and the mechanisms of interaction between the metal and the skin also play a role. Metal exposure can be quantified by direct or indirect approaches described in this chapter. This can provide a better understanding of clinical symptoms from exposure and enable preventive measures that promote healthy skin.


  1. 1.
    Fischer LA, Menné T, Johansen JD. Dose per unit area – a study of elicitation of nickel allergy. Contact Dermatitis. 2007;56(5):255–61.CrossRefGoogle Scholar
  2. 2.
    Fischer LA, Johansen JD, Menné T. Nickel allergy: relationship between patch test and repeated open application test thresholds. Br J Dermatol. 2007;157(4):723–9.CrossRefGoogle Scholar
  3. 3.
    Nielsen NH, et al. Effects of repeated skin exposure to low nickel concentrations: a model for allergic contact dermatitis to nickel on the hands. Br J Dermatol. 1999;141(4):676–82.CrossRefGoogle Scholar
  4. 4.
    Allenby CF, Basketter DA. The effect of repeated open exposure to low levels of nickel on compromised hand skin of nickel-allergic subjects. Contact Dermatitis. 1994;30(3):135–8.CrossRefGoogle Scholar
  5. 5.
    Julander A, et al. New UK nickel-plated steel coins constitute an increased allergy and eczema risk. Contact Dermatitis. 2013;68(6):323–30.CrossRefGoogle Scholar
  6. 6.
    Erfani B, Lidén C, Midander K. Short and frequent skin contact with nickel. Contact Dermatitis. 2015;73(4):222–30.CrossRefGoogle Scholar
  7. 7.
    Girod A, Ramotowski R, Weyermann C. Composition of fingermark residue: a qualitative and quantitative review. Forensic Sci Int. 2012;223(1–3):10–24.CrossRefGoogle Scholar
  8. 8.
    Taylor NA, Machado-Moreira CA. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extreme Physiol Med. 2013;2(1):1–30.CrossRefGoogle Scholar
  9. 9.
    Midander K, et al. Cobalt skin dose resulting from short and repetitive contact with hard metals. Contact Dermatitis. 2014;70(6):361–8.CrossRefGoogle Scholar
  10. 10.
    Fluhr JW, Feingold KR, Elias PM. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol. 2006;15(7):483–92.CrossRefGoogle Scholar
  11. 11.
    Lodén M, et al. Friction, capacitance and transepidermal water loss (TEWL) in dry atopic and normal skin. Br J Dermatol. 1992;126(2):137–41.CrossRefGoogle Scholar
  12. 12.
    Tagami H. Electrical measurement of the hydration state of the skin surface in vivo. Br J Dermatol. 2014;171(S3):29–33.CrossRefGoogle Scholar
  13. 13.
    Irvine AD, McLean WHI, Leung Filaggrin DYM. Mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–27.CrossRefGoogle Scholar
  14. 14.
    Kezic S, et al. Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum. J Invest Dermatol. 2008;128(8):2117–9.CrossRefGoogle Scholar
  15. 15.
    Hostynek JJ. Factors determining percutaneous metal absorption. Food Chem Toxicol. 2003;41(3):327–45.CrossRefGoogle Scholar
  16. 16.
    Hindsen M, Bruze M. The significance of previous contact dermatitis for elicitation of contact allergy to nickel. Acta Derm Venereol. 1998;78(5):367–70.CrossRefGoogle Scholar
  17. 17.
    Bergstresser PR, Richard Taylor J. Epidermal ‘turnover time’—a new examination. Br J Dermatol. 1977;96(5):503–6.CrossRefGoogle Scholar
  18. 18.
    Ringborg E, Lidén C, Julander A. Nickel on the market: a baseline survey of articles in ‘prolonged contact’ with skin. Contact Dermatitis. 2016;75(2):77–81.CrossRefGoogle Scholar
  19. 19.
    Lidén C, et al. Nickel release from tools on the Swedish market. Contact Dermatitis. 1998;39(3):127–31.CrossRefGoogle Scholar
  20. 20.
    Lidén C, Norberg K. Nickel on the Swedish market. Follow-up after implementation of the nickel directive. Contact Dermatitis. 2005;52(1):29–35.CrossRefGoogle Scholar
  21. 21.
    Biesterbos J, Lidén C, van der Valk P. Nickel on the Dutch market: 10 years after entry into force of the EU nickel directive. Contact Dermatitis. 2011;65(2):115–7.CrossRefGoogle Scholar
  22. 22.
    Lidén C, Johnsson S. Nickel on the Swedish market before the Nickel Directive. Contact Dermatitis. 2001;44(1):7–12.CrossRefGoogle Scholar
  23. 23.
    Thyssen JP, et al. The outcome of dimethylglyoxime testing in a sample of cell phones in Denmark. Contact Dermatitis. 2008;59(1):38–42.CrossRefGoogle Scholar
  24. 24.
    Thyssen JP, et al. Assessment of nickel and cobalt release from 200 unused hand-held work tools for sale in Denmark — sources of occupational metal contact dermatitis? Sci Total Environ. 2011;409(22):4663–6.CrossRefGoogle Scholar
  25. 25.
    Julander A, et al. Nickel deposited on the skin–visualization by DMG test. Contact Dermatitis. 2011;64(3):151–7.CrossRefGoogle Scholar
  26. 26.
    Bregnbak D, et al. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test. Contact Dermatitis. 2015;73(5):281–8.CrossRefGoogle Scholar
  27. 27.
    Midander K, et al. The cobalt spot test – further insights into its performance and use. Contact Dermatitis. 2013;69(5):280–7.PubMedGoogle Scholar
  28. 28.
    Midander K, et al. Testing in artificial sweat – is less more? Comparison of metal release in two different artificial sweat solutions. Regul Toxicol Pharmacol. 2016;81:381–6.CrossRefGoogle Scholar
  29. 29.
    Midander K, et al. Allergy risks with laptop computers – nickel and cobalt release. Contact Dermatitis. 2016;74(6):353–9.CrossRefGoogle Scholar
  30. 30.
    Julander A, et al. Cobalt-containing alloys and their ability to release cobalt and cause dermatitis. Contact Dermatitis. 2009;60(3):165–70.CrossRefGoogle Scholar
  31. 31.
    Kettelarij JAB, et al. Cobalt, nickel and chromium release from dental tools and alloys. Contact Dermatitis. 2014;70(1):3–10.CrossRefGoogle Scholar
  32. 32.
    Erfani B. A strategy to assess short and frequent skin contacts with nickel. In: Institute of Environmental Medicine. Stockholm: Karolinska Institutet; 2014. p. 32
  33. 33.
    Fenske RA. State-of-the-art measurement of agricultural pesticide exposures. Scand J Work Environ Health. 2005;31(1):67–73.PubMedGoogle Scholar
  34. 34.
    Lidén C, et al. Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS. Contact Dermatitis. 2006;54(5):233–8.CrossRefGoogle Scholar
  35. 35.
    Du Plessis JL, et al. Assessment of dermal exposure and skin condition of workers exposed to nickel at a South African base metal refinery. Ann Occup Hyg. 2010;54(1):23–30.PubMedGoogle Scholar
  36. 36.
    Gawkrodger DJ, McLeod CW, Dobson K. Nickel skin levels in different occupations and an estimate of the threshold for reacting to a single open application of nickel in nickel-allergic subjects. Br J Dermatol. 2012;166(1):82–7.CrossRefGoogle Scholar
  37. 37.
    Staton I, et al. Dermal nickel exposure associated with coin handling and in various occupational settings: assessment using a newly developed finger immersion method. Br J Dermatol. 2006;154(4):658–64.CrossRefGoogle Scholar
  38. 38.
    Henriks-Eckerman M-L, et al. Determination of occupational exposure to alkanolamines in metal-working fluids. Ann Occup Hyg. 2007;51(2):153–60.PubMedGoogle Scholar
  39. 39.
    Lind M-L, et al. A method for assessing occupational dermal exposure to permanent hair dyes. Ann Occup Hyg. 2004;48(6):533–9.PubMedGoogle Scholar
  40. 40.
    Hostynek JJ, et al. Human stratum corneum penetration by nickel. In vivo study of depth distribution after occlusive application of the metal as powder. Acta Derm Venereol Suppl (Stockh). 2001;212:5–10.CrossRefGoogle Scholar
  41. 41.
    Franken A, et al. In vitro permeation of metals through human skin: a review and recommendations. Chem Res Toxicol. 2015;28(12):2237–49.CrossRefGoogle Scholar
  42. 42.
    Soutar A, et al. Use of patches and whole body sampling for the assessment of dermal exposure. Ann Occup Hyg. 2000;44(7):511–8.CrossRefGoogle Scholar
  43. 43.
    Bangsgaard N, Thyssen JP, Hald M. Occupational hand eczema caused by nickel allergy and semi-quantified by dimethylglyoxime testing of the skin. Contact Dermatitis. 2015;73(1):65–7.CrossRefGoogle Scholar
  44. 44.
    Sykes EA, et al. Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy. Nat Commun. 2014;5:3796.CrossRefGoogle Scholar
  45. 45.
    Kettelarij J, et al. Snapshot of cobalt, chromium and nickel exposure in dental technicians. Contact Dermatitis. 2016;75(6):370–6.CrossRefGoogle Scholar
  46. 46.
    Jensen P, et al. Occupational hand eczema caused by nickel and evaluated by quantitative exposure assessment. Contact Dermatitis. 2011;64(1):32–6.CrossRefGoogle Scholar
  47. 47.
    Lidén C, et al. Deposition of nickel, chromium, and cobalt on the skin in some occupations – assessment by acid wipe sampling. Contact Dermatitis. 2008;58(6):347–54.CrossRefGoogle Scholar
  48. 48.
    Julander A, et al. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components. Ann Occup Hyg. 2010;54(3):340–50.PubMedGoogle Scholar
  49. 49.
    Day GA, Virji MA, Stefaniak AB. Characterization of exposures among cemented tungsten carbide workers. Part II: assessment of surface contamination and skin exposures to cobalt, chromium and nickel. J Expos Sci Environ Epidemiol. 2008;19(4):423–34.CrossRefGoogle Scholar
  50. 50.
    Gumulka M, et al. Nickel exposure when working out in the gym. Acta Derm Venereol. 2015;95(2):247–9.CrossRefGoogle Scholar
  51. 51.
    Lidén C, Skare L, Vahter M. Release of nickel from coins and deposition onto skin from coin handling – comparing euro coins and SEK. Contact Dermatitis. 2008;59(1):31–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden

Personalised recommendations