Advertisement

Metal Allergy pp 263-271 | Cite as

Hypersensitivity to Cardiovascular Implants: Stents

  • Cecilia Svedman
  • Magnus Bruze
Chapter

Abstract

Percutaneous coronary interventions and stenting have existed since the 1970s. Stents can be made of different materials and have different designs. A complication to the intervention and especially to bare metal stents is in-stent restenosis with neointimal proliferation and chronic inflammation, which has several causes briefly discussed below. A possible association between stents and metal allergy has been investigated. With regard to stents, studies have been mainly retrospective, in itself a limitation, and show somewhat disparate results. This chapter will focus on some of these findings but also on general knowledge of stents and what happens in the vessel. This insight is meant to assist those who advise patients and cardiologists and who investigate patients with stents where question of metal allergy is raised.

Notes

Acknowledgements

We would like to thank CG Gustavsson, cardiologist and associate professor, University of Lund, Malmö, for revising and providing fruitful comments to the text.

References

  1. 1.
    Grüntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978;1:263.CrossRefGoogle Scholar
  2. 2.
    Sugwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987;316:701–6.CrossRefGoogle Scholar
  3. 3.
    Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent-implantation with balloon angioplasty in patients with coronary artery disease. Benestent study group. N Engl J Med. 1994;331:489–95.CrossRefGoogle Scholar
  4. 4.
    Bauters C, Meurice T, Hamon M, et al. Mechanisms and prevention of restenosis: from experimental models to clinical practice. Cardiovascular Re. 1996;31:835–56.CrossRefGoogle Scholar
  5. 5.
    Serruys PW, Unger F, Sousa JE, et al. Comparison of coronary artery bypass surgery and stenting for the treatment of multivessel disease. N Enl J Med. 2001;344:1117–24.CrossRefGoogle Scholar
  6. 6.
    Lindholm D, Curr JS. Bioresorbable stents in PCI. Current cardiology reports. Curr Cardiol Rep. 2016;18:74.CrossRefGoogle Scholar
  7. 7.
    Stettler C, Wandel S, Allemann S, et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet. 2007;370:937–48.CrossRefGoogle Scholar
  8. 8.
    Simard T, Hibbert B, Ramirez FD, et al. The evolution of coronary stents: a brief review. Can J Cardiol. 2014;30:35–45.CrossRefGoogle Scholar
  9. 9.
    Sarno G, Lagerqvist B, Nilsson J, et al. Stent thrombosis in new-generation drug-eluting stents in patients with STEMI undergoing primary PCI: a report from SCAAR. J Am Coll Cardiol. 2014;64:16–24.CrossRefGoogle Scholar
  10. 10.
    Taniwaki M, Rau MD, Zaugg D, et al. Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation. 2016;133:650–60.CrossRefGoogle Scholar
  11. 11.
    Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation. 2007;115:2426–34.CrossRefGoogle Scholar
  12. 12.
    Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;4881:193–202.CrossRefGoogle Scholar
  13. 13.
    Otsuka F, Vorphal M, Nakano M, et al. Pathology of second-generation everolimus-eluting stents versus first generation sirolimus-and paclitaxel-eluting stents in humans. Circulation. 2014;129:211–23.CrossRefGoogle Scholar
  14. 14.
    Joner M, Koppara T, Virmani R, et al. Improving vessel healing with fully bioresorbable drug-eluting stents: more than a pipe dream. Eur Heart J. 2016;37:241–4.CrossRefGoogle Scholar
  15. 15.
    Iqbal J, Onuma Y, Ormiston J, et al. Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J. 2014;35:765–76.CrossRefGoogle Scholar
  16. 16.
    Fuster V, Mearns B. The CVD paradox: mortality vs prevalence. Nat Rev Cardiol. 2009;96:669.CrossRefGoogle Scholar
  17. 17.
    Jorge C, Dubois C. Clinical utility of platinum chromium bare-metal stents in coronary heart disease. Med Devices (Auckl). 2015;8:359–67.Google Scholar
  18. 18.
    Iannaccone M, D'Ascenzo F, Templin C, et al. Optical coherence tomography evaluation of intermediate-term healing of different stent types: systemic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2016;pii:jew070. [Epub ahead of print]Google Scholar
  19. 19.
    Whittaker DR, Fillinger MF. The engineering of endovascular stent technology: a review. Vasc Endovasc Surg. 2006;40:85–94.CrossRefGoogle Scholar
  20. 20.
    Honorari G, Ellis SG, Wilkoff BL, et al. Hypersensitivity reactions associated with endovascular devices. Contact Dermatitis. 2008;59:7–22.CrossRefGoogle Scholar
  21. 21.
    Gotman I. Characteristics of metals used in implants. J Endourl. 1997;11:383–9.CrossRefGoogle Scholar
  22. 22.
    Mennuni MG, Pagnotta PA, Stefanini GG. Coronary stents: the impact of technological advances on clinical outcomes. Ann Biomed Eng. 2016;44:488–96.CrossRefGoogle Scholar
  23. 23.
    Stefanini GG, Holmes DR. Drug eluting coronary-artery stents. N Engl J Med. 2013;368:254–65.CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Bourantas CV, Farooq V, et al. Bioresorbable scaffolds in the treatment of coronary artery disease. BMC Cardiovas Disord. 2016;16:38. doi:10.1186/s12872-016-0207-5.CrossRefGoogle Scholar
  25. 25.
    Ma X, Wu T, Robich MP. Drug eluting stents. Int J Clin Exp Med. 2012;3:192–201.Google Scholar
  26. 26.
    Schild HH, Strunk H. Biological effects of metallic stents. Chapter 9. In: Schild HH, Strunk H, editors. Textbook of metallic stents, Adam A, Dondelinger R, Mueller P, series editors. Oxford: ISIS, Medical Media; 1997. p. 175–186.Google Scholar
  27. 27.
    Rousseau H, Puel J, Joffre F, et al. Self expanding endovascular prosthesis: an experimental study. Radiology. 1987;164:709–14.CrossRefGoogle Scholar
  28. 28.
    Chaabane C, Otsuka F, Virmani R, et al. Biological responses in stented arteries. Cardiovasc Res. 2013;99:353–63.CrossRefGoogle Scholar
  29. 29.
    Consigny PM, Tulenko TN, Nicosia RF. Immediate and long-term effects of angioplasty on normal rabbit iliac artery. Arteriosclerosis. 1986;6:265–76.CrossRefGoogle Scholar
  30. 30.
    Lindner V, Lappi D, Baird A, et al. Role of basic fibroblast growth factor in vascular lesion formation. Circ Res. 1991;68:106–13.CrossRefGoogle Scholar
  31. 31.
    Palmaz FC, Tio FO, Schatz RA, et al. Early endothelialization of balloon expandable stents: experimental observations. J Intervent Radiol. 1998;3:119–24.Google Scholar
  32. 32.
    Palmaz FC, Windeler SA, Garcia F, et al. Artheriosclerotic rabbit aortas: expandable intraluminal grafting. Radiology. 1986;160:723–6.CrossRefGoogle Scholar
  33. 33.
    Van der Heiden K, Gijsen FJ, Narracott A, et al. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc Res. 2013;99:269–75.CrossRefGoogle Scholar
  34. 34.
    Maass D, Demiere D, Deaton D, et al. Transluminal implantation of self-adjustable expanding prosthesis: principles, techniques and results. Prog Artif Organs. 1983;2:979.Google Scholar
  35. 35.
    Beyar R, Shofti R, Grenedier F, et al. Coronary arterial histological response to the self expandable nitinol stent. J Am Coll Cardiol. 1993;21:336A.Google Scholar
  36. 36.
    Beyar R, Shofti R, Grenedier F, et al. Self expandable nitinol stent for cardiovascular applications: canine and human experience. Catheter Cardiovasc Diagn. 1994;3:162–70.CrossRefGoogle Scholar
  37. 37.
    Schwartz SM, Campbell GR, Campbell JH. Replication of smooth muscle cells in vascular disease. Circ Res. 1986;58:427.CrossRefGoogle Scholar
  38. 38.
    Farb A, Kolodgie FD, Hwang JY, et al. Extracellular matrix changes in stented human coronary arteries. Circulation. 2004;110:940–7.CrossRefGoogle Scholar
  39. 39.
    Curcio A, Torella D, Indolfi C. Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J. 2011;75:1287–96.CrossRefGoogle Scholar
  40. 40.
    Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation. 2001;104:2007–11.CrossRefGoogle Scholar
  41. 41.
    Stone GW, Ellis SG, Cox DA, TAXUS-IV Investigators, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350:221–31.CrossRefGoogle Scholar
  42. 42.
    Granada JF, Inami S, Aboodi MS, et al. Development of a novel prohealing stent designed to deliver sirolimus from a biodegradable abluminal matrix. Circ Cardiovasc Interv. 2010;3:257–66.CrossRefGoogle Scholar
  43. 43.
    Douglas G, Van Kampen E, Hale AB, et al. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare metal vs drug-eluting stents and genetic endothelial cell modification. Eur Heart J. 2013;34:3378–88.CrossRefGoogle Scholar
  44. 44.
    World Health Organization. International programme on chemical safety, immunotoxicity, Harmonization Project Document No 10. Guidance for immunotoxicity Risk Assessments for Chemicals. This project was conducted within the WHO/International Programme on Chemical Safety Project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals, WHO Library Cataloguing-in-Publication Data ISBN 978 92 4 150330 3 Printed by the WHO Document Production Services, Geneva, Switzerland 2011 (available from: http://www.who.int/ipcs/methods/harmonization/areas/immunotoxicity/en/) accessed 27 Jul 2016.
  45. 45.
    Fischer A, Wieneke H, Brauer H, et al. Metallic biomaterials for coronary stents. Z Kardiol. 2001;90:251–62.CrossRefGoogle Scholar
  46. 46.
    Scmidt M, Raghavan B, Muller V, et al. Crucial role for human toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 2010;11:814–9.CrossRefGoogle Scholar
  47. 47.
    Raghavan B, Martin SF, Esser PR, et al. Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep. 2012;13:1109–15.CrossRefGoogle Scholar
  48. 48.
    Svedman C, Möller H, Gruvberger B, et al. Implants and contact allergy: are sensitizing metals released as haptens from coronary stents? Contact Dermatitis. 2014;2014:92–7.CrossRefGoogle Scholar
  49. 49.
    Schmalz GP, Garhammer P, Reitinger T. Metal content of biopsies from neighborhood of casting alloys. J Dent Res. 1999;7:236. Abstract No. 1048Google Scholar
  50. 50.
    Dimic ID, Cvijovic-Alagic IL, Kostic IT, et al. Metallic ion release from biocompatible cobalt-based alloy. Chem Ind Chem Eng Q. 2014;20:571–7.CrossRefGoogle Scholar
  51. 51.
    Rachmawati D. Innate immune reactivity to dental alloys. Thesis, Vrije Universiteit, Amsterdam, 2016.Google Scholar
  52. 52.
    Gong Z, Li M, Guo X, et al. Stent implantation in patients with metal allergy: a systemic review and meta-analysis. Coron Artery Dis. 2013;24:684–9.PubMedGoogle Scholar
  53. 53.
    Koster R, Vieluf D, Kiehn M, et al. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet. 2000;356:1895–7.CrossRefGoogle Scholar
  54. 54.
    Hillen U, Haude M, Erbel R, et al. Evaluation of metal allergies in patients with coronary stents. Contact Dermatitis. 2002;47:353–6.CrossRefGoogle Scholar
  55. 55.
    Iijima R, Iakri Y, Amiya E, Tanimoto S, Nakazawa G, et al. The impact of metallic allergy on stent implantation: metal allergy and recurrence of in-stent restenosis. Int J Cardiol. 2005;104:319–25.CrossRefGoogle Scholar
  56. 56.
    Norgaz T, Hobioglu G, Serdar ZA, et al. Is there a link between nickel allergy and coronary stent restenosis? Tohoku J Exp Med. 2005;206:243–6.CrossRefGoogle Scholar
  57. 57.
    Saito T, Hokimoto S, Oshima S, et al. Metal allergic reaction in chronic refractory in-stent restenosis. Cardiovasc Revasc Med. 2009;10:17–22.CrossRefGoogle Scholar
  58. 58.
    Svedman C, Ekqvist S, Möller H, et al. A correlation found between contact allergy to stent material and restenosis of the coronary arteries. Contact Dermatitis. 2009;60:158–64.CrossRefGoogle Scholar
  59. 59.
    El-Mawardy R, Fuad H, Abdel-Salam Z, et al. Does nickel allergy play a role in the development of in-stent restenosis? Eur Rev Med Pharmacol Sci. 2011;15:1235–40.PubMedGoogle Scholar
  60. 60.
    Thyssen JP, Engkilde K, Menné T, et al. No association between metal allergy and cardiac in-stent restenosis in patients with dermatitis-results from a linkage study. Contact Dermatitis. 2011;64:138–41.CrossRefGoogle Scholar
  61. 61.
    Aliağaoğlu C, Turan H, Erden I, et al. Relation of nickel allergy with in-stent restenosis in patients treated with cobalt chromium stents. Ann Dermatol. 2012;24:426–9.CrossRefGoogle Scholar
  62. 62.
    Ekqvist S, Svedman C, Möller H, et al. High frequency of contact allergy to gold in patients with endovascular coronary stents. Br Journal of Dermatology. 2007;157:730–8.CrossRefGoogle Scholar
  63. 63.
    Ekqvist S, Svedman C, Lundh T, et al. A correlation found between gold concentration in blood and patch test reactions in patients with coronary stents. Contact Dermatitis. 2008;59:137–42.CrossRefGoogle Scholar
  64. 64.
    Nakazawa G, Tanabe K, Aoki J. Sirolimus-eluting stents suppress neointimal formation irrespective of metallic allergy. Circ J. 2008;72:893–6.CrossRefGoogle Scholar
  65. 65.
    Shokri M, Bagheri B, Garjani A. Everolimus-eluting stents reduce monocyte expression of toll-like receptor 4. Adv Pharm Bull. 2015;5:643–7.CrossRefGoogle Scholar
  66. 66.
    Hansen PR, Ahlehoff O, Gislason GH, et al. Absence of metal allergy in patients with very late drug-eluting stent thrombosis: a pilot study. Int J Cardiol. 2010;145:629–30.CrossRefGoogle Scholar
  67. 67.
    Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet. 2007;369:667–78.CrossRefGoogle Scholar
  68. 68.
    Wenaweser P, Daemen J, Zwahlen M, et al. Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol. 2008;52:1134–40.CrossRefGoogle Scholar
  69. 69.
    Chatterjee S, Pandey A. Drug eluting stents: friend or foe? A review of cellular mechanisms behind the effects of paclitaxel and sirolimus eluting stents. Curr Drug Metab. 2008;9:554–66.CrossRefGoogle Scholar
  70. 70.
    Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109:701–5.CrossRefGoogle Scholar
  71. 71.
    Nebeker JR, Virmani R, Bennett CL, et al. Hypersensitivity cases associated with drug eluting coronary stents. JACC. 2006;47:175–81.CrossRefGoogle Scholar
  72. 72.
    Van der Giessen WJ, Lincoff AM, Schwartz RS, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation. 1996;94:1690–7.CrossRefGoogle Scholar
  73. 73.
    Tenekecioglu E, Farooq V, Bourantas CV, et al. Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord. 2016;16:38. Published onlineCrossRefGoogle Scholar
  74. 74.
    Otsuka F, Yahagi K, Ladich E, et al. Hypersensitivity reaction in the US Food and Drug Administration-approved second-generation drug-eluting stents: histopathological assessment with ex vivo optical coherence tomography. Circulation. 2015;13:322–4.CrossRefGoogle Scholar
  75. 75.
    Nikam N, Steinberg D, Steinberg T. Advances in stent technologies and their effect on clinical efficacy and safety. J Allergy Clin Immunol Pract. 2015;3:683–95.CrossRefGoogle Scholar
  76. 76.
    Thyssen JP, Menné T, Schalock PC, et al. Pragmatic approach to the clinical work-up of patients with putative allergic disease to metallic orthopedic implants before and after surgery. Br J Dermatol. 2011;164:473–8.PubMedGoogle Scholar
  77. 77.
    Schalock PC, Menné T, Johansen JD. Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use. Contact Dermatitis. 2011;66:4–19.CrossRefGoogle Scholar
  78. 78.
    Liden C, Bruze M. Kontaktallergi mot ortopediska metallimplantat är svårbedömd. Lakartidningen. 2016;113:D6L9.PubMedGoogle Scholar
  79. 79.
    Kieffer M. Nickel sensitivity: relationship between history and patch test reaction. Contact Dermatitis. 1979;5:398–401.CrossRefGoogle Scholar
  80. 80.
    Svedman C, Dunér K, Kehler M, et al. Lichenoid reactions to gold from dental restorations and exposure to gold through intracoronary implant of a gold-plated stent. Clin Res Cardiol. 2006;95:689–91.CrossRefGoogle Scholar
  81. 81.
    Ahnlide I, Ahlgren C, Björkner B, et al. Gold concentration in blood in relation to the number of gold restorations and contact allergy to gold. Acta Odontol Scand. 2002;60:301–5.CrossRefGoogle Scholar
  82. 82.
    Ekqvist S, Lundh T, Svedman C, et al. Does gold concentration in blood influence the result of patch testing to gold? Br J Dermatol. 2009;160:1016–21.CrossRefGoogle Scholar
  83. 83.
    Lai DW, Saver JL, Araujo JA, et al. Pericarditis associated with nickel hypersensitivity to Amplatzer occluder device: a case report. Catheter Cardiovasc Interv. 2005;66:424–6.CrossRefGoogle Scholar
  84. 84.
    Fall S, Bruze M, Isaksson M, et al. Contact allergy trends in Sweden - a retrospective comparison of patch test data from 199, 2000, and 2009. Contact Dermatitis. 2015;201572:297–304.CrossRefGoogle Scholar
  85. 85.
    Thyssen JP, Linneberg A, Menné T, et al. Contact allergy to allergens of the TRUE-test (panels 1 and 2) has decreased modestly in the general population. Br J Dermatol. 2009;161:1124–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Occupational and Environmental DermatologySkåne University Hospital, University of LundMalmöSweden
  2. 2.Department of DermatologyHelsingborg Hospital, University of LundLundSweden

Personalised recommendations