Advertisement

A Review on Neuropsychophysiological Correlates of Flow

  • Fiona Fui-Hoon NahEmail author
  • Tejaswini Yelamanchili
  • Keng Siau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10294)

Abstract

Games are captivating from a human-computer interaction point of view. They can induce an intensely involving and engaging experience termed flow, which refers to the optimal state of experience when one is fully immersed in an activity. This paper provides a review of the neural and psychophysiological correlates of flow as well as some directions for future research.

Keywords

Neural correlates Psychophysiological correlates Brain imaging Electroencephalogram Functional magnetic resonance imaging Flow 

References

  1. 1.
    Hartmann, T., Klimmt, C.: Gender and computer games: exploring females’ dislikes. J. Comput. Mediated Commun. 11(4), 910–931 (2006)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, T., Speck, D., Wettstein, D., Masnari, O., Beeli, G., Jäncke, L.: Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children. Front. Hum. Neurosci. 2(8), 1–12 (2008)Google Scholar
  3. 3.
    Fairclough, S.H.: Psychophysiological inference and physiological computer games. In: Brain-Computer Interfaces and Games Workshop at Advances in Computer Entertainment, p. 19 (2007)Google Scholar
  4. 4.
    Peifer, C.: Psychophysiological correlates of flow-experience. In: Engeser, S. (ed.) Advances in Flow Research, pp. 139–164. Springer, New York (2012)CrossRefGoogle Scholar
  5. 5.
    Rani, P., Sarkar, N., Liu, C.: Maintaining optimal challenge in computer games through real-time physiological feedback. In: Proceedings of the 11th International Conference on Human Computer Interaction, vol. 58, pp. 22–27, July 2005Google Scholar
  6. 6.
    Weber, R., Ritterfeld, U., Mathiak, K.: Does playing violent video games induce aggression? Empirical evidence of a functional magnetic resonance imaging study. Media Psychol. 8(1), 39–60 (2006)CrossRefGoogle Scholar
  7. 7.
    Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper & Row, New York (1990)Google Scholar
  8. 8.
    Anshel, M.H.: Sport Psychology: From Theory to Practice. Pearson, San Francisco (2011)Google Scholar
  9. 9.
    Csikszentmihalyi, M.: Finding Flow: The Psychology of Engagement with Everyday Life. Basic Books, New York (1997)Google Scholar
  10. 10.
    Miller, B.L., Cummings, J.L.: The Human Frontal Lobes: Functions and Disorders. Guilford Press, New York (2007)Google Scholar
  11. 11.
    Libenson, M.H.: Practical approach to electroencephalography. Elsevier Health Sciences, Philadelphia (2012)Google Scholar
  12. 12.
    Goldberg, I.I., Harel, M., Malach, R.: When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50(2), 329–339 (2006)CrossRefGoogle Scholar
  13. 13.
    Csikszentmihalyi, M., Csikszentmihalyi, I.S.: Optimal Experience: Psychological Studies of Flow in Consciousness. Cambridge University Press, Cambridge (1992)Google Scholar
  14. 14.
    Nah, F., Eschenbrenner, B., DeWester, D., Park, S.: Impact of flow and brand equity in 3D virtual worlds. J. Database Manag. 21(3), 69–89 (2010)CrossRefGoogle Scholar
  15. 15.
    Kahneman, D.: Attention and Effort. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  16. 16.
    Hamilton, J.A., Haier, R.J., Buchsbaum, M.S.: Intrinsic enjoyment and boredom coping scales: validation with personality, evoked potential and attention measures. Pers. Individ. Differ. 5(2), 183–193 (1984)CrossRefGoogle Scholar
  17. 17.
    Gusnard, D.A., Akbudak, E., Shulman, G.L., Raichle, M.E.: Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Nat. Acad. Sci. 98(7), 4259–4264 (2001)CrossRefGoogle Scholar
  18. 18.
    Marr, A.J.: In the zone: a biobehavioral theory of the flow experience. Athletic Insight Online J. Sport Psychol. 3(1) (2001). http://www.athleticinsight.com/Vol3Iss1/Commentary.htm
  19. 19.
    Dietrich, A.: Neurocognitive mechanisms underlying the experience of flow. Conscious. Cogn. 13(4), 746–761 (2004)CrossRefGoogle Scholar
  20. 20.
    Sanchez-Vives, M.V., Slater, M.: From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6(4), 332–339 (2005)CrossRefGoogle Scholar
  21. 21.
    Kivikangas, J.M.: Psychophysiology of flow experience: an explorative study, Master’s thesis, University of Helsinki (2006)Google Scholar
  22. 22.
    Mandryk, R.L., Atkins, M.S.: A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. Int. J. Hum Comput Stud. 65(4), 329–347 (2007)CrossRefGoogle Scholar
  23. 23.
    Nacke, L., Lindley, C.A.: Affective ludology, flow and immersion in a first-person shooter: measurement of player experience. J. Can. Game Stud. Assoc. 3(5), 1–22 (2009)Google Scholar
  24. 24.
    De Manzano, Ö., Theorell, T., Harmat, L., Ullén, F.: The psychophysiology of flow during piano playing. Emotion 10(3), 301–311 (2010)CrossRefGoogle Scholar
  25. 25.
    Keller, J., Bless, H., Blomann, F., Kleinböhl, D.: Physiological aspects of flow experiences: skills-demand-compatibility effects on heart rate variability and salivary cortisol. J. Exp. Soc. Psychol. 47(4), 849–852 (2011)CrossRefGoogle Scholar
  26. 26.
    Klasen, M., Weber, R., Kircher, T.T., Mathiak, K.A., Mathiak, K.: Neural contributions to flow experience during video game playing. Soc. Cogn. Affect. Neurosci. 7(4), 485–495 (2012)CrossRefGoogle Scholar
  27. 27.
    Bavelier, D., Achtman, R.L., Mani, M., Focker, J.: Neural bases of selective attention in action video game players. Vis. Res. 61, 132–143 (2012)CrossRefGoogle Scholar
  28. 28.
    Berta, R., Bellotti, F., De Gloria, A., Pranantha, D., Schatten, C.: Electroencephalogram and physiological signal analysis for assessing flow in games. IEEE Trans. Comput. Intell. AI Games 5(2), 164–175 (2013)CrossRefGoogle Scholar
  29. 29.
    Léger, P.M., Davis, F.D., Cronan, T.P., Perret, J.: Neurophysiological correlates of cognitive absorption in an enactive training context. Comput. Hum. Behav. 34, 273–283 (2014)CrossRefGoogle Scholar
  30. 30.
    Li, M., Jiang, Q., Tan, C.H., Wei, K.K.: Enhancing user-game engagement through software gaming elements. J. Manag. Inf. Syst. 30(4), 115–150 (2014)CrossRefGoogle Scholar
  31. 31.
    Sanei, S., Chambers, J.A.: EEG Signal Processing. John Wiley & Sons, Chichester (2013)Google Scholar
  32. 32.
    Collette, F., Vander, L.M.: Brain imaging of the central executive component of working memory. Neurosci. Biobehav. Rev. 26(2), 105–125 (2002)CrossRefGoogle Scholar
  33. 33.
    Babiloni, C., Babiloni, F., Carducci, F., Cappa, S.F., Cincotti, F., Del Percio, C., Miniussi, C., Vito Moretti, D., Rossi, S., Sosta, K., Rossini, P.M.: Human cortical rhythms during visual delayed choice reaction time tasks: a high-resolution EEG study on normal aging. Behav. Brain Res. 153(1), 261–271 (2004)CrossRefGoogle Scholar
  34. 34.
    Brann, D.W., Dhandapani, K., Wakade, C., Mahesh, V.B., Khan, M.M.: Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72(5), 381–405 (2007)CrossRefGoogle Scholar
  35. 35.
    Müller-Putz, G.R., Riedl, R., Wriessnegger, S.C.: Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. Commun. Assoc. Inf. Syst. 37(1), 1–46 (2015)Google Scholar
  36. 36.
    Okada, Y.: Empirical bases for constraints in current-imaging algorithms. Brain Topogr. 5(4), 373–377 (1993)CrossRefGoogle Scholar
  37. 37.
    Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6), 14–30 (2001)CrossRefGoogle Scholar
  38. 38.
    Pizzagalli, D.A.: Electroencephalography and high-density electrophysiological source localization. Handb. Psychophysiol. 3, 56–84 (2007)CrossRefGoogle Scholar
  39. 39.
    Speckmann, E.J., Elger, C.E., Gorji, A.: Neurophysiological basis of EEG and DC potentials. In: Schomer, D.L., da Silva, F.L. (eds.) Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, pp. 17–32. Lippincott Williams & Wilkins, Philadelphia (2011)Google Scholar
  40. 40.
    Jensen, O., Tesche, C.D.: Frontal theta activity in humans increases with memory load in a working memory task. Eur. J. Neurosci. 15(8), 1395–1399 (2002)CrossRefGoogle Scholar
  41. 41.
    Klimesch, W., Schimke, H., Schwaiger, J.: Episodic and semantic memory: an analysis in the EEG theta and alpha band. Electroencephalogr. Clin. Neurophysiology 91(6), 428–441 (1994)CrossRefGoogle Scholar
  42. 42.
    Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T.: Theta band power in the human scalp EEG and the encoding of new information. NeuroReport 7(7), 1235–1240 (1996)CrossRefGoogle Scholar
  43. 43.
    Horne, J.A.: Why We Sleep: The Functions of Sleep in Humans and Other Animals. Oxford University Press, Oxford (1988)Google Scholar
  44. 44.
    Da Silva, F.L.: Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol. 79(2), 81–93 (1991)CrossRefGoogle Scholar
  45. 45.
    Pfurtscheller, G., Stancak, A., Neuper, C.: Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. Int. J. Psychophysiol. 24(1), 39–46 (1996)CrossRefGoogle Scholar
  46. 46.
    Sauseng, P., Klimesch, W., Schabus, M., Doppelmayr, M.: Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 57(2), 97–103 (2005)CrossRefGoogle Scholar
  47. 47.
    Nah, F., Eschenbrenner, B., Zeng, Q., Telaprolu, V., Sepehr, S.: Flow in gaming: literature synthesis and framework development. Int. J. Inf. Syst. Manag. 1(1/2), 83–124 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fiona Fui-Hoon Nah
    • 1
    Email author
  • Tejaswini Yelamanchili
    • 1
  • Keng Siau
    • 1
  1. 1.Missouri University of Science and TechnologyRollaUSA

Personalised recommendations