Towards Accepted Smart Interactive Textiles

The Interdisciplinary Project INTUITEX
  • Philipp Brauner
  • Julia van Heek
  • Anne Kathrin Schaar
  • Martina Ziefle
  • Nur Al-huda Hamdan
  • Lukas Ossmann
  • Florian Heller
  • Jan Borchers
  • Klaus Scheulen
  • Thomas Gries
  • Hannah Kraft
  • Hannes Fromm
  • Marina Franke
  • Christian Wentz
  • Manfred Wagner
  • Manuel Dicke
  • Christian Möllering
  • Franz Adenau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10293)

Abstract

Smart Interactive Textiles combine the warmth and omnipresence of textiles in our everyday lives with the benefits of modern information and communication technologies. The potential of innovation is not only based on technical ingenuity, but also on the consideration and embedding of peoples’ fears, requirements, desires, and wishes regarding these innovative technologies. Thus, the development of smart interactive textiles requires the expertise of various disciplines. Foremost, appropriate conductive yarns must be selected and integrated into conventional fabrics. Sensors and actuators must be embedded in textiles in a way that they could be used as a user interface. The design of these textiles should meet human needs and should enable an intuitive, easy to learn, and effective interaction. To meet these requirements, potential users should be part of the development and evaluation processes of innovative smart textiles. In this article, we present a research framework that integrates several interdisciplinary perspectives (interface design, textile technology, integration and automation, communication and human factors). We realized three functional smart textile demonstrators (curtain, chair, jacket). We report on the results of this interdisciplinary research project as well as the research questions and key findings of the individual partners. In summary, this article demonstrates that interdisciplinary cooperation, user-centered and participatory design, and iterative product development are necessary for successful innovative technologies.

Keywords

Pervasive technology Ubiquitous computing Conductive yarn Smart textiles Smart interactive textiles Design for all Technology acceptance Iterative product development 

References

  1. 1.
    Robinson, S.: History of Dyed Textiles. MIT Press, Cambridge (1970)Google Scholar
  2. 2.
    Kvavadze, E., Bar-Yosef, O., Belfer-Cohen, A., Boaretto, E., Jakeli, N., Matskevich, Z., Meshveliani, T.: 30,000-Year-Old Wild Flax Fibers, vol. 325, p. 1359. Science, New York (2009)Google Scholar
  3. 3.
    Caceres, R., Friday, A.: Ubicomp systems at 20: progress, opportunities, and challenges. IEEE Pervasive Comput. 11, 14–21 (2012)CrossRefGoogle Scholar
  4. 4.
    Weiser, M.: The computer for the 21st century. Sci. Am. 265, 94–104 (1991)CrossRefGoogle Scholar
  5. 5.
    Bauer, R.: Gescheiterte Innovationen. Campus Verlag GmbH, Frankfurt (2006)Google Scholar
  6. 6.
    Rogers, E.M.: Diffusion of Innovations. Free Press, New York (2003)Google Scholar
  7. 7.
    Cherenack, K., van Pieterson, L.: Smart textiles: challenges and opportunities. J. Appl. Phys. 112, 91301 (2012)CrossRefGoogle Scholar
  8. 8.
    Rekimoto, J.: GestureWrist and GesturePad: unobtrusive wearable interaction devices. In: Proceedings Fifth International Symposium on Wearable Computers, pp. 21–27 (2001)Google Scholar
  9. 9.
    Saponas, T.S., Harrison, C., Benko, H.: Pocket touch: through-fabric capacitive touch input. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology - UIST 2011, pp. 303–308 (2011)Google Scholar
  10. 10.
    Poupyrev, I., Gong, N.-W., Fukuhara, S., Karagozler, M.E., Schwesig, C., Robinson, K.E.: Project jacquard: interactive digital textiles at scale. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 4216–4227 (2016)Google Scholar
  11. 11.
    Perner-Wilson, H., Buechley, L., Tech, H., Ave, M., Ma, C.: Handcrafting textile interfaces from a Kit-of-No-Parts. In: Proceedings of the 5th International Conference on Tangible, Embedded, and Embodied Interaction, pp. 61–68 (2011)Google Scholar
  12. 12.
    Heller, F., Ivanov, S., Wacharamanotham, C., Borchers, J.: FabriTouch: exploring flexible touch input on textiles. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 59–62 (2014)Google Scholar
  13. 13.
    Schneegass, S., Voit, A.: GestureSleeve: using touch sensitive fabrics for gestural input on the forearm for controlling smartwatches. In: Proceedings of the 2016 ACM International Symposium on Wearable Computers – ISWC 2016, pp. 108–115 (2016)Google Scholar
  14. 14.
    Schmeder, A., Freed, A.: Support vector machine learning for gesture signal estimation with a piezo-resistive fabric touch surface. In: Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), pp. 244–249 (2010)Google Scholar
  15. 15.
    Lee, S.-S., Kim, S., Jin, B., Choi, E., Kim, B., Jia, X., Kim, D., Lee, K.: How users manipulate deformable displays as input devices. In: Proceedings of CHI, p. 1647 (2010)Google Scholar
  16. 16.
    Troiano, G.M., Pedersen, E.W., Hornbæk, K.: User-defined gestures for elastic, deformable displays. In: Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces – AVI 2014, pp. 1–8 (2014)Google Scholar
  17. 17.
    Lepinski, J., Vertegaal, R.: Cloth displays: interacting with drapable textile screens. In: Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 285–288 (2011)Google Scholar
  18. 18.
    Peschke, J., Göbel, F., Gründer, T., Keck, M., Kammer, D., Groh, R.: DepthTouch: an elastic surface for tangible computing. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 770–771 (2012)Google Scholar
  19. 19.
    Karrer, T., Wittenhagen, M., Lichtschlag, L., Heller, F., Borchers, J.: Pinstripe: eyes-free continuous input on interactive clothing. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems – CHI 2011, pp. 1313–1322 (2011)Google Scholar
  20. 20.
    Gioberto, G., Coughlin, J., Bibeau, K., Dunne, L.E.: Detecting bends and fabric folds using stitched sensors. In: Proceedings of the 2013 International Symposium on Wearable Computers, pp. 53–56. ACM (2013)Google Scholar
  21. 21.
    Funk, M., Schneegaß, S., Behringer, M., Henze, N., Schmidt, A.: An interactive curtain for media usage in the shower. In: Proceedings of the 4th International Symposium on Pervasive Displays, pp. 225–231. ACM (2015)Google Scholar
  22. 22.
    Beckhaus, S., Blom, K., Haringer, M.: ChairIO – the chair-based interface. Concepts and technologies for pervasive games: a reader for pervasive gaming research, pp. 231–264 (2007)Google Scholar
  23. 23.
    Endert, A., Fiaux, P., Chung, H., Stewart, M., Andrews, C., North, C.: ChairMouse - leveraging natural chair rotation for cursor navigation on large, high-resolution displays. In: Extended Abstracts of the International Conference on Human Factors in Computing Systems, pp. 571–580. ACM (2011)Google Scholar
  24. 24.
    Ware, C.: Information Visualization: Perception for Design. Elsevier Academic Press, New York (2004)Google Scholar
  25. 25.
    Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-Computer Interaction, 4th edn. Pearson Addison Wesley, Boston (2004)Google Scholar
  26. 26.
    Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung 4, 301–350 (1923)CrossRefGoogle Scholar
  27. 27.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–340 (1989)CrossRefGoogle Scholar
  28. 28.
    Venkatesh, V., Thong, J.Y.L., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 36, 157–178 (2012)Google Scholar
  29. 29.
    Kranz, M., Holleis, P., Schmidt, A.: Embedded interaction: interacting with the internet of things. IEEE Internet Comput. 14, 46–53 (2010)CrossRefGoogle Scholar
  30. 30.
    Van Heek, J., Schaar, A.K., Trevisan, B., Bosowski, P., Ziefle, M.: User requirements for wearable smart textiles. Does the usage context matter (medical vs. sports)? In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare (2014)Google Scholar
  31. 31.
    Scheulen, K., Schwarz, A., Jockenhoevel, S.: Reversible contacting of smart textiles with adhesive bonded magnets. In: Proceedings of IEEE International Symposium on Wearable Computers (ISWC), pp. 131–132. ACM (2013)Google Scholar
  32. 32.
    Mecnika, V., Scheulen, K., Anderson, C.F., Hörr, M., Breckenfelder, C.: Joining technologies for electronic textiles. Electr. Text. Smart Fabr. Wearable Technol. 133–153. Elsevier (2015)Google Scholar
  33. 33.
    Mecnika, V., Hörr, M.: Embroidery for smart and intelligent textiles. In: 13th International Conference on Global Research and Education (2014)Google Scholar
  34. 34.
    Hurford, R., Martin, A., Larsen, P.: Designing wearables. In: Proceedings - International Symposium on Wearable Computers, pp. 133–134 (2007)Google Scholar
  35. 35.
    Profita, H.P., Clawson, J., Gilliland, S., Zeagler, C., Starner, T., Budd, J., Do, E.Y.-L.: Don’t mind me touching my wrist. In: Proceedings of the 17th Annual International Symposium on Wearable Computers – ISWC 2013, p. 89. ACM (2013)Google Scholar
  36. 36.
    Holleis, P., Schmidt, A., Paasovaara, S., Puikkonen, A., Häkkilä, J.: Evaluating capacitive touch input on clothes. In: Proceedings of the 10th International Conference on Human-Computer Interaction with Mobile Devices and Services, p. 81 (2008)Google Scholar
  37. 37.
    Norman, D.A.: The Design of Everyday Things. Basic Books, New York (2002)Google Scholar
  38. 38.
    Linz, T., Vieroth, R., Dils, C., Koch, M., Braun, T., Becker, K.F., Kallmayer, C., Hong, S.M.: Embroidered interconnections and encapsulation for electronics in textiles for wearable electronics applications. Adv. Sci. Technol. 60, 85–94 (2008)CrossRefGoogle Scholar
  39. 39.
    Heller, F., Lee, H.-Y. (Kriz), Brauner, P., Gries, T., Ziefle, M., Borchers, J.: An intuitive textile input controller. In: MuC 2015: Mensch und Computer 2015 – Tagungsband, pp. 263–266. De Gruyter Oldenbourg Wissenschaftsverlag, Germany (2015)Google Scholar
  40. 40.
    Al-huda Hamdan, N., Heller, F., Wacharamanotham, C., Thar, J., Borchers, J.: Grabrics: a foldable two-dimensional textile input controller. In: CHI Extended Abstracts on Human Factors in Computing Systems, pp. 2497–2503 (2016)Google Scholar
  41. 41.
    Hildebrandt, J., Brauner, P., Ziefle, M.: Smart textiles as intuitive and ubiquitous user interfaces for smart homes. In: Zhou, J., Salvendy, G. (eds.) Human Computer Interaction International - Human Aspects of IT for the Aged Population, pp. 423–434. Springer, Switzerland (2015)Google Scholar
  42. 42.
    Ziefle, M., Brauner, P., Heidrich, F., Möllering, C., Lee, H.-Y., Armbrüster, C.: Understanding requirements for textile input devices: individually-tailored interfaces within home environments. In: Stephanidis, C., Antona, M. (eds.) Proceedings of Universal Access in Human-Computer Interaction HCII 2014, vol. 8515, pp. 589–600. Springer, Heidelberg (2014)Google Scholar
  43. 43.
    Brauner, P., Van Heek, J., Ziefle, M.: Age, gender, and technology attitude as factors for acceptance of smart interactive textiles in home environments. In: Proceedings of the 3rd International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AgingWell (in press)Google Scholar
  44. 44.
    Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1083–1092. ACM, New York (2009)Google Scholar
  45. 45.
    Schlick, C., Stich, V., Schmitt, R., Schuh, G., Ziefle, M., Brecher, C., Blum, M., Mertens, A., Faber, M., Kuz, S., Petruck, H., Fuhrmann, M., Luckert, M., Brambring, F., Reuter, C., Hering, N., Groten, M., Korall, S., Pause, D., Brauner, P., Herfs, W., Odenbusch, M., Wein, S., Stiller, S., Berthold, M.: Cognition-enhanced, self-optimizing production networks. In: Brecher, C., Özdemir, D. (eds.) Integrative Production Technology - Theory and Applications, pp. 645–743. Springer International Publishing, Heidelberg (2017)CrossRefGoogle Scholar
  46. 46.
    Brauner, P., Leonhardt, T., Ziefle, M., Schroeder, U.: The effect of tangible artifacts, gender and subjective technical competence on teaching programming to seventh graders. In: Hromkovič, J., Královič, R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 61–71. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11376-5_7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Philipp Brauner
    • 1
    • 2
  • Julia van Heek
    • 1
    • 2
  • Anne Kathrin Schaar
    • 1
    • 2
  • Martina Ziefle
    • 1
    • 2
  • Nur Al-huda Hamdan
    • 1
    • 3
  • Lukas Ossmann
    • 1
    • 3
  • Florian Heller
    • 1
    • 3
  • Jan Borchers
    • 1
    • 3
  • Klaus Scheulen
    • 4
  • Thomas Gries
    • 4
  • Hannah Kraft
    • 5
  • Hannes Fromm
    • 5
  • Marina Franke
    • 5
  • Christian Wentz
    • 5
  • Manfred Wagner
    • 5
  • Manuel Dicke
    • 6
  • Christian Möllering
    • 6
  • Franz Adenau
    • 7
  1. 1.Human-Computer Interaction CenterRWTH Aachen UniversityAachenGermany
  2. 2.Chair of Communication ScienceRWTH Aachen UniversityAachenGermany
  3. 3.Chair for Media InformaticsRWTH Aachen UniversityAachenGermany
  4. 4.Institute for Textile EngineeringRWTH Aachen UniversityAachenGermany
  5. 5.BraunWagner GmbHAachenGermany
  6. 6.Enervision GmbHAachenGermany
  7. 7.AFP Textilveredelungs- und Vertriebs GmbHBaesweilerGermany

Personalised recommendations