Watch Out!

User-Centered Feedback Design for a V2X-Smartphone App
  • Teresa Schmidt
  • Ralf Philipsen
  • Dzenan Dzafic
  • Martina Ziefle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10287)


Mobility is a fast developing, technological and simultaneously human field of research. V2X-technology is one major contributor that will influence the behavior, efficiency and safety of traffic participants. To include all participating members of traffic, we developed a V2X-smartphone application to empower vulnerable road user to be part of the technological integration. With a two-tiered research approach, we focused on both, the iconography and the feedback design of that application. One key finding of the presented work is a clear recommendation of combined features (color, size and geometrical form) for rear-end collision scenarios. The article concludes with practical recommendations that facilitate visualization-varieties from a users’ perspective.


V2X-technology Smartphone application Feedback design Usability Mobility 



We would like to thank the research group on mobility at RWTH Aachen University, which works in the Center for European Research on Mobility (CERM) supported by the Excellence Initiative of German State and Federal Government. Many thanks go also to Florian Groh, Pierre Schoonbrood and Christian Klein for their valuable research input.


  1. 1.
    Timotheou, S., Panayiotou, C.G., Polycarpou, M.M.: Transportation systems: monitoring, control, and security. In: Kyriakides, E., Polycarpou, M. (eds.) Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems. SCI, vol. 565, pp. 125–166. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-44160-2_5 Google Scholar
  2. 2.
  3. 3.
    Statistisches Bundesamt: Verkehrsunfälle [traffic accidents], vol. 8, no. 7 (2016).
  4. 4.
    European Commission: White Paper – Roadmap to a Single European Transport Area (2011).
  5. 5.
    Farmer, C.M.: Effect of electronic stability control on automobile crash risk. Traffic Inj. Prev. 5(4), 317–325 (2004)CrossRefGoogle Scholar
  6. 6.
    Breuer, J.J., Faulhaber, A., Frank, P., Gleissner, S.: Real world safety benefits of brake assistance systems. In: 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV). BMVI (2007)Google Scholar
  7. 7.
    Themann, P., Zlocki, A., Eckstein, L.: Energieeffiziente Fahrzeuglängsführung durch V2X-Kommunikation. In: Siebenpfeiffer, W. (ed.) Fahrerassistenzsysteme und Effiziente Antriebe. ATZ/MTZ-Fachbuch, pp. 27–33. Springer, Wiesbaden (2015). doi: 10.1007/978-3-658-08161-4_4 Google Scholar
  8. 8.
    Pech, T., Gabriel, M., Jähn, B., Kühnert, D., Reisdorf, P., Wanielik, G.: Prototyping framework for cooperative interaction of automated vehicles and vulnerable road users. In: Schulze, T., Müller, B., Meyer, G. (eds.) Advanced Microsystems for Automotive Applications 2016. LNM, pp. 43–53. Springer, Cham (2016). doi: 10.1007/978-3-319-44766-7_4 CrossRefGoogle Scholar
  9. 9.
    Abusaber, W.: Remembering future tasks: a usability study of reminder apps (Doctoral dissertation). Auckland University of Technology Auckland (2015)Google Scholar
  10. 10.
    Sugimoto, C., Nakamura, Y., Hashimoto, T.: Prototype of pedestrian-to-vehicle communication system for the prevention of pedestrian accidents using both 3G wireless and WLAN communication. In: 3rd International Symposium on Wireless Pervasive Computing, pp. 764–767. IEEE (2008)Google Scholar
  11. 11.
    Engel, S., Kratzsch, C., David, K.: Car2Pedestrian-communication: protection of vulnerable road users using smartphones. In: Fischer-Wolfarth, J., Meyer, G. (eds.) Advanced Microsystems for Automotive Applications 2013. LNM, pp. 31–41. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-00476-1_4 CrossRefGoogle Scholar
  12. 12.
    ARD/ZDF Media Commission: Online survey 2016 [Onlinestudie] (2016).
  13. 13.
    Caplan, E.M.: MapMyFitness: tracking your training and routes. Br. J. Sports Med. (2016). doi: 10.1136/bjsports-2016-096361 Google Scholar
  14. 14.
    Flach, A., David, K.: A physical analysis of an accident scenario between cars and pedestrians. In: 70th IEEE Vehicular Technology Conference Fall (2009)Google Scholar
  15. 15.
    Nielsen, J.: Usability 101: Introduction to Usability (2012).
  16. 16.
    Rogers, Y.: Icons at the interface: their usefulness. Interact. Comput. 1(1), 105–117 (1989)CrossRefGoogle Scholar
  17. 17.
    Gatsou, C., Politis, A., Zevgolis, D.: The importance of mobile interface icons on user interaction. Int. J. Comput. Sci. Appl. (IJCSA) 9(3), 92–107 (2012)Google Scholar
  18. 18.
    Dewar, R.: Design and evaluation of public information symbols. In: Zwaga, H.J.G., Boersema, T., Hoonhout, H.C.M. (eds.) Visual Information for Everyday Use: Design and Research Perspectives, pp. 285–303. Taylor & Francis Ltd, London (1999)Google Scholar
  19. 19.
    Beier, G.: Locus of control when interacting with technology [Kontrollüberzeugungen im Umgang mit Technik]. Rep. Psychol. 24, 684–693 (1999)Google Scholar
  20. 20.
    Bojko, A.A.: Informative or misleading? Heatmaps deconstructed. In: Jacko, J.A. (ed.) HCI 2009. LNCS, vol. 5610, pp. 30–39. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02574-7_4 CrossRefGoogle Scholar
  21. 21.
    Baldassi, S., Burr, D.C.: “Pop-out” of targets modulated in luminance or colour: the effect of intrinsic and extrinsic uncertainty. Vis. Res. 44, 1227–1233 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Teresa Schmidt
    • 1
  • Ralf Philipsen
    • 1
  • Dzenan Dzafic
    • 2
  • Martina Ziefle
    • 1
  1. 1.Human-Computer Interaction CenterRWTH Aachen UniversityAachenGermany
  2. 2.Embedded SoftwareRWTH Aachen UniversityAachenGermany

Personalised recommendations