Ontology Matching Algorithms for Data Model Alignment in Big Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10250)

Abstract

Big Data commonly refers to large data with different formats and sources. The problem of managing heterogeneity among varied information resources is increasing. For instance, how to handle variations in meaning or ambiguity in entity representation still remains a challenge. Ontologies can be used to overcome this heterogeneity. However, information cannot be processed across ontologies unless the correspondences among the elements are known. Ontology matching algorithms (systems) are thus needed to find the correspondences (alignments). Many ontology matching algorithms have been proposed in recent literature, but most of them do not consider data instances. The few that do consider data instances still face the big challenge of ensuring high accuracy when dealing with Big Data. This is because existing ontology matching algorithms only consider the problem of handling voluminous data, but do not incorporate techniques to deal with the problem of managing heterogeneity among varied information (i.e., different data formats and data sources). This research aims to develop robust and comprehensive ontology matching algorithms that can find high-quality correspondences between different ontologies while addressing the variety problem associated with Big Data.

Keywords

Big Data Ontology matching Data heterogeneity Alignment 

Notes

Acknowledgement

This research is supported by the Data to Decisions Cooperative Research Centre (D2D CRC). The thesis is supervised by Prof. Markus Stumptner and Dr. Wolfgang Mayer.

References

  1. 1.
    Agrawal, R., Ailamaki, A., Bernstein, P.A., Brewer, E.A., Carey, M.J., Chaudhuri, S., Doan, A., Florescu, D., Franklin, M.J., Garcia-Molina, H., Gehrke, J., Gruenwald, L., Haas, L.M., Halevy, A.Y., Hellerstein, J.M., Ioannidis, Y.E., Korth, H.F., Kossmann, D., Madden, S., Magoulas, R., Ooi, B.C., O’Reilly, T., Ramakrishnan, R., Sarawagi, S., Stonebraker, M., Szalay, A.S., Weikum, G.: The Claremont report on database research. ACM Sigmod Rec. 37(3), 9–19 (2008)CrossRefGoogle Scholar
  2. 2.
    Chowdhury, N.A., Dou, D.: Evaluating ontology matchers using arbitrary ontologies and human generated heterogeneities. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 664–681. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33615-7_15 CrossRefGoogle Scholar
  3. 3.
    Do, H.H., Rahm, E.: COMA: a system for flexible combination of schema matching approaches. In: Proceedings of the 28th International Conference on Very Large Data Bases (VLDB 2002), Hong Kong, China, pp. 610–621. VLDB Endowment (2002)Google Scholar
  4. 4.
    Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies on the semantic web. In: Proceedings of the 11th International Conference on World Wide Web (WWW 2002), pp. 662–673. ACM, New York (2002)Google Scholar
  5. 5.
    Euzenat, J., Shvaiko, P., et al.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013)CrossRefMATHGoogle Scholar
  6. 6.
    Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. Foundations of Artificial Intelligence, Chap. 2, vol. 3, pp. 89–134. Elsevier (2008)Google Scholar
  7. 7.
    Hu, W., Chen, J., Zhang, H., Qu, Y.: How matchable are four thousand ontologies on the semantic web. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 290–304. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21034-1_20 CrossRefGoogle Scholar
  8. 8.
    Hu, W., Qu, Y.: Falcon-AO: a practical ontology matching system. Web Seman. Sci. Serv. Agents World Wide Web 6(3), 237–239 (2008)CrossRefGoogle Scholar
  9. 9.
    Knoblock, C.A., Szekely, P.: Exploiting semantics for Big Data integration. AI Mag. 36(1), 25–38 (2015)Google Scholar
  10. 10.
    Li, J., Wang, Z., Zhang, X., Tang, J.: Large scale instance matching via multiple indexes and candidate selection. Knowl.-Based Syst. 50, 112–120 (2013)CrossRefGoogle Scholar
  11. 11.
    Ma, Y., Tran, T., Bicer, V.: Typifier: inferring the type semantics of structured data. In: Proceedings of the 29th International Conference on Data Engineering (ICDE 2013), Brisbane, Australia, pp. 206–217. IEEE (2013)Google Scholar
  12. 12.
    Mao, M., Peng, Y., Spring, M.: An adaptive ontology mapping approach with neural network based constraint satisfaction. Web Seman. Sci. Serv. Agents World Wide Web 8(1), 14–25 (2010)CrossRefGoogle Scholar
  13. 13.
    Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning support for mapping revision. J. Logic Comput. 19(5), 807 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)CrossRefGoogle Scholar
  15. 15.
    Pührer, J., Heymans, S., Eiter, T.: Dealing with inconsistency when combining ontologies and rules using DL-programs. In: Aroyo, L., Antoniou, G., Hyvönen, E., Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 183–197. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13486-9_13 CrossRefGoogle Scholar
  16. 16.
    Schneider, T., Hashemi, A., Bennett, M., Brady, M., Casanave, C., Graves, H., Gruninger, M., Guarino, N., Levenchuk, A., Lucier, E., Obrst, L., Ray, S., Sriram, R.D., Vizedom, A., West, M., Whetzel, T., Yim, P.: Ontology for big systems: the ontology summit 2012 communiqué. Appl. Ontology 7(3), 357–371 (2012)Google Scholar
  17. 17.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  18. 18.
    Wang, P., Zhou, Y., Xu, B.: Matching large ontologies based on reduction anchors. In: IJCAI, Barcelona, pp. 2343–2348 (2011)Google Scholar
  19. 19.
    Zhang, W., Zhao, H., Mei, H.: A propositional logic-based method for verification of feature models. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 115–130. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30482-1_16 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of South AustraliaAdelaideAustralia

Personalised recommendations