Automating the Dynamic Interactions of Self-governed Components in Distributed Architectures

  • Sebastian R. BaderEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10250)


The ongoing digitalization and penetration of the Web into each aspect of software development creates new possibilities and challenges. The flexible reuse of components promises to drastically reduce the implementation and maintenance effort. But growing complexity in terms of variety and dynamic changes bring monolithic approaches to their limits. In this paper, an approach is presented which enables components in distributed systems to observe, judge and independently react to dynamic changes in their neighborhood. Reducing the overall complexity to smaller and easier to manage subproblems leads to more flexible and reliable systems. The target is a delegation of decision making to the single components.


Distributed systems Component coordination Dynamic web 


  1. 1.
    Alaya, M.B., Medjiah, S., Monteil, T., Drira, K.: Toward semantic interoperability in oneM2M architecture. IEEE Commun. Mag. 53(12), 35–41 (2015)CrossRefGoogle Scholar
  2. 2.
    Berners-Lee, T., Weitzner, D.J., Hall, W., O’Hara, K., Shadbolt, N., Hendler, J.A.: A framework for web science. Found. Trends Web Sci. 1(1), 1–130 (2006)CrossRefGoogle Scholar
  3. 3.
    Beygelzimer, A., Riabov, A., Sow, D., Turaga, D.S., Udrea, O.: Big data exploration via automated orchestration of analytic workflows. In: ICAC 2013, pp. 153–158 (2013)Google Scholar
  4. 4.
    Bhargava, B., Angin, P., Ranchal, R., Lingayat, S.: A distributed monitoring and reconfiguration approach for adaptive network computing, pp. 31–35. IEEE (2015)Google Scholar
  5. 5.
    Bleul, S., Weise, T., Geihs, K.: The web service challenge-a review on semantic web service composition. Electron. Commun. EASST 17 (2009)Google Scholar
  6. 6.
    Cao, X., Kapahnke, P., Klusch, M.: SPSC: Efficient composition of semantic services in unstructured P2P networks. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 455–470. Springer, Cham (2015). doi: 10.1007/978-3-319-18818-8_28CrossRefGoogle Scholar
  7. 7.
    Cardellini, V., D’Angelo, M., Grassi, V., Marzolla, M., Mirandola, R.: A decentralized approach to network-aware service composition. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 34–48. Springer, Cham (2015). doi: 10.1007/978-3-319-24072-5_3. Scholar
  8. 8.
    Dimou, A., Verborgh, R., Sande, M.V., Mannens, E., Van de Walle, R.: Machine-interpretable dataset and service descriptions for heterogeneous data access and retrieval, pp. 145–152. ACM Press (2015)Google Scholar
  9. 9.
    Harth, A., Knoblock, C.A., Stadtmller, S., Studer, R., Szekely, P.: On-the-fly integration of static and dynamic linked data. In: COLD 2013, pp. 1–12 (2013)Google Scholar
  10. 10.
    Joshi, A.K., Hitzler, P., Dong, G.: LinkGen: Multipurpose linked data generator. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 113–121. Springer, Cham (2016). doi: 10.1007/978-3-319-46547-0_12CrossRefGoogle Scholar
  11. 11.
    Keppmann, F.L., Maleshkova, M., Harth, A.: Semantic technologies for realising decentralised applications for the web of things. In: ICECCS, pp. 71–80 (2016)Google Scholar
  12. 12.
    Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL) (2017).
  13. 13.
    La Torre, G., Monteleone, S., Cavallo, M., D’Amico, V., Catania, V.: A context-aware solution to improve web service discovery and user-service interaction, pp. 180–187. IEEE (2016)Google Scholar
  14. 14.
    Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T.: OWL-S: Semantic markup for web services. W3C Member Submission 22 (2004). 2007–04Google Scholar
  15. 15.
    Mayer, S., Verborgh, R., Kovatsch, M., Mattern, F.: Smart configuration of smart environments. IEEE Trans. Autom. Sci. Eng. 13(3), 1247–1255 (2016)CrossRefGoogle Scholar
  16. 16.
    Morrison, J.P.: Flow-based Programming. In: Proceedings of the 1st International Workshop on Software Engineering for Parallel and Distributed Systems, pp. 25–29 (1994)Google Scholar
  17. 17.
    Palmonari, M., Comerio, M., Paoli, F.: Effective and flexible NFP-based ranking of web services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC/ServiceWave -2009. LNCS, vol. 5900, pp. 546–560. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10383-4_40CrossRefGoogle Scholar
  18. 18.
    Paoli, F.D., Palmonari, M., Comerio, M., Maurino, A.: A meta-model for non-functional property descriptions of web services, pp. 393–400. IEEE (2008)Google Scholar
  19. 19.
    Pedrinaci, C., Cardoso, J., Leidig, T.: Linked USDL: A vocabulary for web-scale service trading. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 68–82. Springer, Cham (2014). doi: 10.1007/978-3-319-07443-6_6CrossRefGoogle Scholar
  20. 20.
    Roman, D., Lausen, H., Keller, U.: Web Service Modeling Ontology (WSMO) (2006).
  21. 21.
    Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition using SHOP2. Web Semant. 1(4), 377–396 (2004)CrossRefGoogle Scholar
  22. 22.
    Speiser, S.: Semantic annotations for WS-Policy. In: ICWS, pp. 449–456 (2010)Google Scholar
  23. 23.
    Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015)CrossRefGoogle Scholar
  24. 24.
    Sande, M.V., Verborgh, R., Dimou, A., Colpaert, P., Mannens, E.: Hypermedia-based discovery for source selection using low-cost linked data interfaces. IJSWIS 12(3), 79–110 (2016)Google Scholar
  25. 25.
    Verborgh, R., Harth, A., Maleshkova, M., Stadtmller, S., Steiner, T., Taheriyan, M., Van de Walle, R.: Survey of semantic description of REST APIs. In: Pautasso, C., Wilde, E., Alarcon, R. (eds.) REST Advanced Research Topics and Practical Applications, pp. 69–89. Springer, New York (2014)CrossRefGoogle Scholar
  26. 26.
    Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., Vallés, J.G.: Description and interaction of restful services for automatic discovery and execution. In: International Workshop on AFMS. FTRA (2011)Google Scholar
  27. 27.
    Wittern, E., Fischer, R.: A life-cycle model for software service engineering. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 164–171. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40651-5_13CrossRefGoogle Scholar
  28. 28.
    Yahia, E.B.H., Réveillère, L., Bromberg, Y.-D., Chevalier, R., Cadot, A.: Medley: An event-driven lightweight platform for service composition. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 3–20. Springer, Cham (2016). doi: 10.1007/978-3-319-38791-8_1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute AIFBKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations