Advertisement

Secure Elliptic Curves in Cryptography

  • Victor Gayoso MartínezEmail author
  • Lorena González-Manzano
  • Agustín Martín Muñoz
Chapter

Abstract

Elliptic Curve Cryptography (ECC) is a branch of public-key cryptography based on the arithmetic of elliptic curves. In the short life of ECC, most standards have proposed curves defined over prime finite fields using the short Weierstrass form. However, some researchers have started to propose as a more secure alternative the use of Edwards and Montgomery elliptic curves, which could have an impact in current ECC deployments. This chapter presents the different types of elliptic curves used in Cryptography together with the best-known procedure for generating secure elliptic curves, Brainpool. The contribution is completed with the examination of the latest proposals regarding secure elliptic curves analyzed by the SafeCurves initiative.

Notes

Acknowledgements

This work has been partly supported by Ministerio de Economía y Competitividad (Spain) under the project TIN2014-55325-C2-1-R (ProCriCiS), and by Comunidad de Madrid (Spain) under the project S2013/ICE-3095-CM (CIBERDINE), cofinanced with the European Union FEDER funds.

References

  1. 1.
    Agence Nationale de la Sécurité des Systèmes d’Information. (2011). Avis relatif aux paramètres de courbes elliptiques définis par l’Etat français. http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000024668816.
  2. 2.
    American National Standards Institute. (2001). Public Key Cryptography for the Financial Services Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography. ANSI X9.63.Google Scholar
  3. 3.
    American National Standards Institute. (2005). Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). ANSI X9.62.Google Scholar
  4. 4.
    Bernstein, D. J., & Lange, T. (2007). Curve25519: New Diffie-Hellman speed records. In Proceedings of the 9th International Conference on Theory and Practice in Public-Key Cryptography (PKC 2006) (pp. 207–228).Google Scholar
  5. 5.
    Bernstein, D. J., & Lange, T. (2007). Faster addition and doubling on elliptic curves (pp. 29–50). Berlin/Heidelberg: Springer.zbMATHGoogle Scholar
  6. 6.
    Bernstein, D. J., & Lange, T. (2014). SafeCurves. http://safecurves.cr.yp.to/.Google Scholar
  7. 7.
    Bernstein, D. J., & Lange, T. (2016). Explicit-Formulas Database. https://hyperelliptic.org/EFD/.Google Scholar
  8. 8.
    Bernstein, D. J., Birkner, P., Joye, M., Lange, T., & Peters, C. (2008). Twisted Edwards curves. Cryptology ePrint Archive, Report 2008/013. http://eprint.iacr.org/2008/013.
  9. 9.
    Bernstein, D. J., Hamburg, M., Krasnova, A., & Lange, T. (2013). Elligator: Elliptic-curve points indistinguishable from uniform random strings. In Proceedings of the 2013 Conference on Computer & Communications Security (pp. 967–980).Google Scholar
  10. 10.
    Brainpool. (2005). ECC Brainpool Standard Curves and Curve Generation. Version 1.0. http://www.ecc-brainpool.org/download/Domain-parameters.pdf.
  11. 11.
    Bundesamt für Sicherheit in der Informationstechnik. (2012). Elliptic Curve Cryptography. BSI TR-03111 version 2.0. https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_pdf.pdf?__blob=publicationFile.
  12. 12.
    Cohen, H., & Frey, G. (2006). Handbook of elliptic and hyperelliptic curve cryptography. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  13. 13.
    Diem, C. (2003). The GHS attack in odd characteristic. Journal of the Ramanujan Mathematical Society, 18, 1–32.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Durán Díaz, R., Gayoso Martínez, V., Hernández Encinas, L., & Martín Muñoz, A. (2016). A study on the performance of secure elliptic curves for cryptographic purposes. In Proceedings of the International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (pp. 658–667).Google Scholar
  15. 15.
    Edwards, H. M. (2007). A normal form for elliptic curves. Bulletin of the American Mathematical Society, 44, 393–422.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    ElGamal, T. (1985). A public-key cryptosystem and a signature scheme based on discrete logarithm. IEEE Transactions on Information Theory, 31, 469–472.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Frey, G. (1998). How to Disguise an Elliptic Curve (Weil Descent). http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.html.Google Scholar
  18. 18.
    Frey, G. (2001). Applications of arithmetical geometry to cryptographic constructions. In Proceedings of the 5th International Conference on Finite Fields and Applications (pp. 128–161). Heidelberg: Springer.CrossRefGoogle Scholar
  19. 19.
    Frey, G., & Ruck, H. (1994). A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Mathematics of Computation, 62, 865–874.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gaudry, P., Hess, F., & Smart, N. P. (2002). Constructive and destructive facets of Weil descent on elliptic curves. Journal of Cryptology, 15, 19–46.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Institute of Electrical and Electronics Engineers: Standard Specifications for Public Key Cryptography. IEEE 1363 (2000).Google Scholar
  22. 22.
    Institute of Electrical and Electronics Engineers: Standard Specifications for Public Key Cryptography - Amendment 1: Additional Techniques. IEEE 1363a (2004).Google Scholar
  23. 23.
    International Organization for Standardization/International Electrotechnical Commission: Information Technology-Security Techniques-Encryption Algorithms—Part 2: Asymmetric Ciphers. ISO/IEC 18033-2 (2006).Google Scholar
  24. 24.
    Koblitz, N. (1987). Elliptic curve cryptosytems. Mathematics of Computation, 48(177), 203–209.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lochter, M., & Merkle, J. (2010). Elliptic curve cryptography (ECC) Brainpool standard curves and curve generation. Request for Comments (RFC 5639), Internet Engineering Task Force.Google Scholar
  26. 26.
    Menezes, A. J. (1993). Elliptic curve public key cryptosystems. Boston, MA: Kluwer Academic Publishers.CrossRefzbMATHGoogle Scholar
  27. 27.
    Menezes, A., Okamoto, W., & Vanstone, S. (1993). Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory, 39, 1639–1646.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Miller, V. S. (1986). Use of elliptic curves in cryptography. In Lecture Notes in Computer Science (Vol. 218, pp. 417–426). Berlin: Springer.Google Scholar
  29. 29.
    Montgomery, P. L. (1987). Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation, 48, 243–264.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    National Institute of Standards and Technology: Digital Signature Standard (DSS). NIST FIPS 186-4 (2009).Google Scholar
  31. 31.
    National Institute of Standards and Technology: Report on Post-quantum Cryptography (2016). http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf.
  32. 32.
    National Security Agency: NSA Suite B Cryptography (2009). http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml.
  33. 33.
    National Security Agency: Commercial National Security Algorithm Suite (2015). https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm.
  34. 34.
    Pollard, J. (1978). Monte Carlo methods for index computation mod p. Mathematics of Computation, 32, 918–924.MathSciNetzbMATHGoogle Scholar
  35. 35.
    Standards for Efficient Cryptography Group: Recommended Elliptic Curve Domain Parameters. SECG SEC 2 version 2.0 (2010).Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Victor Gayoso Martínez
    • 1
    Email author
  • Lorena González-Manzano
    • 2
  • Agustín Martín Muñoz
    • 1
  1. 1.Institute of Physical and Information Technologies (ITEFI)Spanish National Research Council (CSIC)MadridSpain
  2. 2.Computer Security Lab (COSEC)Universidad Carlos III de MadridLeganés, MadridSpain

Personalised recommendations