Reliable Transmission Protocol for Underwater Acoustic Networks

  • Xiujuan DuEmail author
  • Meiju Li
  • Keqin Li


Underwater Acoustic Networks (UANs) use acoustic communication and are characterized by limited bandwidth capacity, high energy consumption, long propagation delay, which cause the traditional protocols designed for radio channels to be either inapplicable or to be inefficient for UANs. The chapter introduces a three-layer protocol architecture for UANs which is Micro-ANP (including Application, Network-transport, and Physical layer). Further, based on the Micro-ANP architecture and Recursive LT (RLT) code, a handshake-free reliable transmission mechanism is presented in detail.



This work is supported by the National Natural Science Foundation Projects of China (61162003), Key laboratory of IoT of Qinghai Province (2017-Z-Y21), Qinghai Office of Science and Technology (2015-ZJ-904), Hebei Engineering Technology Research Center for IOT Data acquisition & Processing.


  1. 1.
    Zhou, Z., Peng, Z., Cui, J. H., & Jiang, Z. (2010). Handling triple hidden terminal problems for multi-channel MAC in long-delay underwater sensor networks. In Proceedings of international conference on computer communications (INFOCOM) (pp. 1–21). San Diego, USA: IEEE Computer Society.Google Scholar
  2. 2.
    Pompili, D., & Akyildiz, I. F. (2010). A multimedia cross-layer protocol for underwater acoustic sensor networks. IEEE Transaction on Wireless Communications, 9(9), 2924–2933.CrossRefGoogle Scholar
  3. 3.
    Pompili, D., Melodia, T., & Akyildiz, I. F. (2010). Distributed routing algorithms for underwater acoustic sensor networks. IEEE Transaction on Wireless Communications, 9(9), 2934–2944.CrossRefGoogle Scholar
  4. 4.
    Huang, C. J., Wang, Y. W., & Liao, H. H. (2011). A power-efficient routing protocol for underwater wireless sensor networks. Applied Soft Computing, 11(2), 2348–2355.CrossRefGoogle Scholar
  5. 5.
    Zhou, Z., & Cui, J. H. (2008). Energy efficient multi-path communication for time-critical applications in underwater sensor networks. In Proceedings of the 9th ACM international symposium on mobile ad hoc networking and computing, Hong Kong, China (pp. 1–31). New York, USA: ACM.Google Scholar
  6. 6.
    Hao, K., Jin, Z., Shen, H., & Wang, Y. (2015). An efficient and reliable geographic routing protocol based on partial network coding for underwater sensor networks. Sensors, 15, 12720–12735.CrossRefGoogle Scholar
  7. 7.
    Du, X., Huang, K., & Lan, S. (2014). LB-AGR: Level-based adaptive geo-routing for underwater sensor networks. The Journal of China Universities of Posts and Telecommunications, 21(1), 54–59.CrossRefGoogle Scholar
  8. 8.
    Du, X., Peng, C., Liu, X., & Liu, Y. (2015). Hierarchical code assignment algorithm and state-based CDMA protocol for UWSN. China Communications, 12(3), 50–61.CrossRefGoogle Scholar
  9. 9.
    Du, X., Li, K., Liu, X.Su, Y. (2016 RLT code based handshake-free reliable MAC protocol for under-water sensor networks. Journal of Sensors. doi: 10.1155/2016/3184642
  10. 10.
    Du, X., Liu, X., & Su, Y. (2016). Underwater acoustic networks testbed for ecological monitoring of Qinghai Lake. In Proceedings of oceans16 Shanghai (pp. 1–10).Google Scholar
  11. 11.
    Dong, Y., & Liu, P. (2010). Security consideration of underwater acoustic networks. In Proceedings of International Congress on Acoustics, ICA.Google Scholar
  12. 12.
    Cong, Y., Yang, G., Wei, Z., & Zhou, W. (2010). Security in underwater sensor network. In Proceedings of international conference on communication and mobile computing (pp. 162–168).Google Scholar
  13. 13.
    Dini, G., & Lo Duca, A. (2011). A cryptographic suite for underwater cooperative applications. In Proceedings of IEEE symposium on computers & communications (pp. 870–875).Google Scholar
  14. 14.
    Peng C., Du X., Li K., & Li M.. (2016 An ultra lightweight encryption scheme in underwater acoustic networks. Journal of Sensors. doi: 10.1155/2016/8763528
  15. 15.
    Du, X.2014 Micro-ANP protocol architecture for UWSN. China Patent ZL201210053141.0.Google Scholar
  16. 16.
    Molins, M., & Stojanovic, M. (2006). Slotted FAMA: A MAC protocol for underwater acoustic networks. In Proceedings of IEEE OCEANS’06 (pp. 16–22), Singapore.Google Scholar
  17. 17.
    Reed, I., & Solomon, G. (1960). Polynomial Codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics, 8(2), 300–304.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Luby, M., Mitzenmacher, M., Shokrollahi, A., & Spielman, D. (1997). Practical loss-resilient codes. In ACM STOC (pp. 150–159).Google Scholar
  19. 19.
    Xie, P., Zhou, Z., Peng, Z., Cui, J., & Shi, Z. (2010). SDRT: A reliable data transport protocol for underwater sensor networks. Ad Hoc Networks, 8(7), 708–722.CrossRefGoogle Scholar
  20. 20.
    Mo, H., Peng, Z., Zhou, Z., Zuba, M., Jiang, Z., & Cui, J. (2013). Coding based multi-hop coordinated reliable data transfer for underwater acoustic networks: Design, implementation and tests. In Proceedings of Globecom 2013, wireless network symposium (pp. 5066–5071).Google Scholar
  21. 21.
    MacKay, D. J. C. (2005). Fountain codes. In Proceedings of IEEE communications (pp. 1062–1068).Google Scholar
  22. 22.
    Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551–2567.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Luby, M. (2002). LT codes. In Proceedings of the 43rd annual IEEE symposium on foundations of computer science (pp. 271–280).Google Scholar
  24. 24.
    Xie, P., Cui, J.-H., & Lao, L. (2006). VBF: Vector-based forwarding protocol for underwater sensor networks. In Proceedings of IFIP networking.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Computer ScienceQinghai Normal UniversityXiningChina
  2. 2.Key Laboratory of the Internet of Things of Qinghai ProvinceXiningChina
  3. 3.Department of Computer ScienceState University of New YorkNew PaltzUSA

Personalised recommendations