Skip to main content

GNSS Remote Sensing of the Environment

  • Chapter
  • First Online:
  • 1567 Accesses

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

GNSS satellites such as GPS are playing an increasingly crucial role in tracking low earth orbiting (LEO) remote sensing satellites at altitudes below 3000 km with accuracies of better than 10 cm [2]

GNSS data provide the opportunity to observe Earth system processes with greater accuracy and detail, as they occur.

W.C. Hammond et al. [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.gdgps.net/applications/index.html.

  2. 2.

    Total electronic contents.

  3. 3.

    via http://www.cosmic.ucar.edu.

  4. 4.

    http://www.cosmic.ucar.edu/index.html.

  5. 5.

    via http://www.cosmic.ucar.edu.

  6. 6.

    via http://www.tacc.cwb.gov.tw.

  7. 7.

    http://www.cosmic.ucar.edu/cosmic2/index.html.

  8. 8.

    See, e.g., http://www.esa.int/esaCP/SEMV3FO4KKF_Germany_0.html.

  9. 9.

    http://www.csr.utexas.edu/grace/publications/brochure/page11.html.

  10. 10.

    http://gracefo.jpl.nasa.gov/mission/.

  11. 11.

    https://eospso.nasa.gov/missions/sentinel-6.

References

  1. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126. doi:10.1029/2011EO150001

    Article  Google Scholar 

  2. Yunck TP, Wu SC, Wu JT, Thornton CL (1990) Precise tracking of remote sensing satellites with the global positioning system. IEEE Transactions on Geoscience and Remote Sensing 28:108–116

    Article  Google Scholar 

  3. Wickert J (2002) Das CHAMP-Radiookkultationsexperiment: Algorithmen, Prozessierungssystem und erste Ergebnisse. Dissertation. Scientific Technical Report STR02/07, GFZ Potsdam

    Google Scholar 

  4. Foelsche U, Borsche M, Steiner AK, Gobiet M, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2008) Observing upper troposphere-lower stratosphere climate with radio occultation from the CHAMP satellite. Climate Dynamics 31:49–65. doi:10.1007/s00382-007-0337-7

    Article  Google Scholar 

  5. Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmospheric Chemistry and Physics 5:1473–1488

    Article  CAS  Google Scholar 

  6. Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophysical Research Letters 35:L11806. doi:10.1029/2008GL034012

    Article  Google Scholar 

  7. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. Journal of Geophysical Research 111:D21101. doi:10.1029/2006JD007363

    Article  Google Scholar 

  8. Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission: early results. Bulletin of the American Meteorological Society 89(3):313–333. doi:10.1175/BAMS-89-3-313

    Article  Google Scholar 

  9. Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS Meteorology: remote sensing of water vapour using global positioning system. Journal of Geophysical Research 97:15787–15801

    Article  Google Scholar 

  10. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/community_science/science_highlights/2010/ realtimeGPSWhitePaper2010.pdf. Accessed 06 June 2011

  11. Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94-18

    Google Scholar 

  12. Awange, JL, Fukuda Y, Takemoto S, Wickert J, Aoyama A (2004) Analytic solution of GPS atmospheric sounding refraction angles. Earth, Planet and Space 56: 573–587. doi:10.1186/BF03352518

  13. Healey S, Jupp A, Offiler D, Eyre J (2003) The assimilation of radio occultation measurements. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Heidelberg

    Google Scholar 

  14. Kuo Y-H, Sokolovski SV, Anthens RA, Vandenberghe F (2000) Assimilation of the GPS radio occultation data for numerical weather prediction. Terrestrial, Atmospheric and Oceanic Science 11:157–186

    Article  Google Scholar 

  15. Steiner AK, Kirchengast G, Foelsche U, Kornblueh L, Manzini E, Bengtsson L (2001) GNSS occultation sounding for climate monitoring. Physics and Chemistry of the Earth (A) 26(3):113–124. doi:10.1016/S1464-1895(01)00034-5

    Article  Google Scholar 

  16. Yunck TP (2003) The promise of spaceborne GPS for Earth remote sensing. In: International workshop on GPS meteorology, 14th-17th January 2003, Tsukuba, Japan

    Google Scholar 

  17. Anthes RA et al (2004) Application of GPS remote sensing to meteorology and related fields. Journal of Meteorological Society of Japan 82(1B):259–596

    Article  Google Scholar 

  18. Foelsche U, Kirchengast G, Steiner AK (2006) Atmosphere and climate. Studies by occultation methods, Springer, Berlin

    Book  Google Scholar 

  19. Ware H, Fulker D, Stein S, Anderson D, Avery S, Clerk R, Droegmeier K, Kuettner J, Minster B, Sorooshian S (2000a) SuomiNet: a real-time national GPS network for atmospheric research and education. Bulletin of the American Meteorological Society 81:677–694

    Article  Google Scholar 

  20. Ware R (1992) GPS sounding of the earth’s atmosphere. GPS World 3:56–57

    Google Scholar 

  21. Businger S, Chiswell SR, Bevis M, Duan J, Anthes RA, Rocken C, Ware RH, Exner M, VanHove T, Solheim FS (1996) The promise of GPS in atmospheric monitoring. Bulletin of the American Meteorological Society 77:5–18

    Article  Google Scholar 

  22. Ware R, Exner M, Schreiner W, Anthes R, Feng D, Herman B, Gorbunov M, Sokolovskiy S, Hardy K, Kuo Y, Zou X, Trenberth K, Meehan T, Melbourne W, Businger S (1996) GPS sounding of atmosphere from low earth orbit: preliminary results. Bulletin of the American Meteorological Society 77:19–40. doi:10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2

  23. Jin S, Komjathy A (2010) GNSS reflectometry and remote sensing: a new objectives and results. Advances in Space Research 46:111–117

    Article  CAS  Google Scholar 

  24. Resch GM (1984) Water vapor radiometry in geodetic applications. In: Geodetic Refraction (ed) Brunner FK. Springer, New York, pp 53–84

    Google Scholar 

  25. Thayer GD (1974) An improved equation for the radio refractive index of air. Radio Science 9(10):803–807. doi:10.1029/RS009i010p00803

    Article  Google Scholar 

  26. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New York

    Google Scholar 

  27. Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modelling errors on estimates of baseline length. Radio Science 20:1593–1607

    Article  Google Scholar 

  28. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research 101(B2):3227–3246. doi:10.1029/95JB03048

    Article  Google Scholar 

  29. Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS Meteorology: mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology 33:379–386

    Article  Google Scholar 

  30. Rocken C, Ware R, Hove TV, Solheim F, Alber C, Johnson J, Bevis M, Businger S (1993) Sensing atmospheric water vapour with the Global Positioning System. Geophysical Research Letters 20(23):2631–2634. doi:10.1029/93GL02935

    Article  Google Scholar 

  31. Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Journal of Geodesy 64:127–159. doi:10.1007/BF02520642

    Google Scholar 

  32. Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Science 22:379–386

    Article  Google Scholar 

  33. Khandu Awange JL, Wickert J, Schmidt T, Sharifi MA, Heck B, Fleming K (2011) GNSS remote sensing of the Australian tropopause. Climatic Change 105(3–4):597–618. doi:10.1007/s10584-010-9894-6

    Article  Google Scholar 

  34. Schmidt T, Wickert J, Beyerle G, Reigber C (2004) Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. Journal of Geophysical Research 109:D13105. doi:10.1029/2004JD004566

    Article  Google Scholar 

  35. McGrat R, Semmler T, Sweeney C, Wang S (2006) Impact of balloon drift errors in radiosonde data on climate statistics. Journal of climate 19(14):3430–3442. doi:10.1175/JCLI3804.1

    Article  Google Scholar 

  36. Wickert J (2004) Comparison of vertical refractivity and temperature profiles from CHAMP with radiosonde measurements. Danish Meteorological Institute, Copenhagen

    Google Scholar 

  37. Kuo Y-H, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS Radio occultation soundings with radiosonde. Geophysical Research Letters 32:L05817. doi:10.1029/2004GL021443

    Google Scholar 

  38. Arras C, Jacobi C, Wickert J, Heise S, Schmidt T (2010) Sporadic E signatures revealed from multi-satellite radio occultation measurements. Advances in Radio Science 8:225–230. doi:10.5194/ars-8-225-2010

    Article  Google Scholar 

  39. Wickert J, Beyerle G, Hajj GA, Schwieger V, Reigber C (2002) GPS radio occultation with CHAMP: atmospheric profiling utilizing the space-based single differencing technique. Geophysical Research Letters 29(8):1187. doi:10.1029/2001GL013982

    Article  Google Scholar 

  40. Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophysical Research Letters 32(L13806): doi:10.1029/2005GL023109

  41. Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S, Heise S, Huang C, Jakowski N, Köhler W, Mayer C, Offiler D, Ozawa E, Pavelyev A, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terrestrial, Atmospheric and Oceanic Sciences 20:35–50. doi:10.3319/TAO.2007.12.26.01(F3C)

    Article  Google Scholar 

  42. Cheng CZ, Kuo Y-H, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. EOS, Transactions American Geophysical Union 87(17):166. doi:10.1029/2006EO170003

    Article  Google Scholar 

  43. Tsuda T, Hocke K (2004) Application of GPS occultation for studies of atmospheric waves in the Middle Atmosphere and Ionosphere. In: Anthens et al (eds) Application of GPS remote sensing to meteorology and related fields. Journal of Meteorological Society of Japan, vol 82, No. 1B, pp 419–426

    Google Scholar 

  44. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of apace geodetic data. Journal of Geophysical Research 102(B9):20489–20502

    Article  Google Scholar 

  45. Tsuda T, Heki K, Miyazaki S, Aonashi K, Hirahara K, Tobita M, Kimata F, Tabei T, Matsushima T, Kimura F, Satomura M, Kato T, Naito I (1998) GPS meteorology project of Japan - Exploring frontiers of geodesy - Earth Planets Space, 50(10): i–v

    Google Scholar 

  46. Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-Resolution water vapor mapping from interferometric radar measurements. Science 283:1297–1299. doi:10.1126/science.283.5406.1297

    Article  CAS  Google Scholar 

  47. Heise S, Wickert J, Beyerle G, Schmidt T, Reigber C (2006) Global monitoring of tropospheric water vapor with GPS radio occultation aboard CHAMP. Advances in Space Research 37(12):2222–2227. doi:10.1016/j.asr.2005.06.066

    Article  CAS  Google Scholar 

  48. Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophysical Research Letters 36:L15401. doi:10.1029/2009GL038718

    Article  Google Scholar 

  49. Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008. quasigeoid heights. Journal of Geodesy 85:723–740. doi:10.1007/s00190-011-0482-y

    Article  Google Scholar 

  50. Rieser D (2008) Comparison of GRACE-derived monthly Surface Mass Variations with Rainfall Data in Australia. MSc thesis. Graz University of Technology

    Google Scholar 

  51. Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. Groundwater 33(3):425–432. doi:10.1111/j.1745-6584.1995.tb00299.x

    Article  Google Scholar 

  52. Ellett KM, Walker JP, Western AW, Rodell M (2006) A framework for assessing the potential of remote sensed gravity to provide new insight on the hydrology of the Murray–Darling Basin. Australian Journal of Water Resources 10(2):89–101

    Google Scholar 

  53. Awange JL, Sharifi MA, Baur O, Keller W, Featherstone WE, Kuhn M (2009) GRACE hydrological monitoring of Australia. Current limitations and future prospects. Journal of Spatial Science 54(1):23–36. doi:10.1080/14498596.2009.9635164

    Article  Google Scholar 

  54. Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions - principles and aims. Journal of Geodynamics 33(1):3–20. doi:10.1016/S0264-3707(01)00050-3

    Article  Google Scholar 

  55. Schrama EJO, Visser PNAM (2007) Accuracy assessment of the monthly GRACE geoids based upon a simulation. Journal of Geodesy 81(1):67–80. doi:10.1007/s00190-006-0085-1

    Article  Google Scholar 

  56. Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS. GALILEO and augmentation systems, Artech House, Boston/London

    Google Scholar 

  57. Luthcke S, Rowlands D, Lemoine F, Klosko S, Chinn D, McCarthy J (2006) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophysical Research Letters 33:L02402. doi:10.1029/2005GL024846

    Article  Google Scholar 

  58. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi:10.1126/science.1099192

    Article  CAS  Google Scholar 

  59. Bruinsma S, Lemoine J, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Advances in Space Research 45(4):587–601. doi:10.1016/j.asr.2009.10.012

    Article  CAS  Google Scholar 

  60. Lemoine F, Luthcke S, Rowlands D, Chinn D, Klosko S, Cox C (2007) The use of mascons to resolve time-variable gravity from GRACE. In: Tregoning P, Rizos C (eds) Dynamic planet. Springer, Berlin, pp 231–236

    Chapter  Google Scholar 

  61. Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophysical Journal International 158(3):813–826. doi:10.1111/j.1365-246X.2004.02328.x

  62. Chambers D, Wahr J, Nerem R (2004) Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters 31(L13310): doi:10.1029/2004GL020461

  63. Wahr J, Jayne S, Bryan F (2002) A method of inferring changes in deep ocean currents from satellite measurements of time-variable gravity. Journal of Geophysical Research 107(C12):3218. doi:10.1029/2002JC001274

    Article  Google Scholar 

  64. Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resources Research 35(9):2705–2724. doi:10.1029/1999WR900141

    Article  Google Scholar 

  65. Tiwari V, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters 36:L18401. doi:10.1029/2009GL039401

    Article  Google Scholar 

  66. Werth S, Güntner A, Petrovic S, Schmidt R (2009) Integration of GRACE mass variations into a global hydrological model. Earth and Planetary Science Letters 27(1–2):166–173. doi:10.1016/j.epsl.2008.10.021

    Article  Google Scholar 

  67. Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by acocunting for leakage effects. Journal of Geophysical Research 114(B06407). doi:10.1029/2008JB006239

  68. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters 36:L19503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  69. Boy J-P, Chao B (2005) Precise evaluation of atmospheric loading effects on Earth’s time-variable gravity field. Journal of Geophysical Research 110:B08412. doi:10.1029/2002JB002333

    Article  Google Scholar 

  70. Swenson S, Wahr J (2002) Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid. Journal of Geophysical Research 107(B9):2194. doi:10.1029/2000JB000024

    Google Scholar 

  71. Barletta V, Sabadini R, Bordoni A (2008) Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophysical Journal International 172(1):18–30. doi:10.1111/j.1365-246X.2007.03630.x

    Article  Google Scholar 

  72. Tregoning P, Ramillien G, McQueen H, Zwartz D (2009) Glacial isostatic adjustment and nonstationary signals observed by GRACE. Journal of Geophysical Research 114:B06406. doi:10.1029/2008JB006161

    Google Scholar 

  73. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resources Research 39(8):1223. doi:10.1029/2002WR001736

    Article  Google Scholar 

  74. Ramillien G, Frappart F, Cazenave A, Gutner A (2005) Time variations of land water storage from an inversion of two years of GRACE geoids [rapid communication]. Earth and Planetary Science Letters 235(1–2):283–301. doi:10.1016/j.epsl.2005.04.005

    Article  CAS  Google Scholar 

  75. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research (Solid Earth) 103(B12):30205–30230. doi:10.1029/98JB02844

    Article  Google Scholar 

  76. Heiskanen WA, Moritz H (1967) Physical geodesy. W.H, Freeman and Company, San Francisco

    Google Scholar 

  77. Yang Q (2016) Applications of Satellite Geodesy in Environmental and Climate Change. Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6440. Accessed 26 Jan 2017

  78. Pugh D (2004) Changing sea levels. Effect of tides, weather and climate. Cambridge Univeristy Press

    Google Scholar 

  79. Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proceedings of the IEEE 98(5):735–751. doi:10.1109/JPROC.2009.2034765

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Awange .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Awange, J. (2018). GNSS Remote Sensing of the Environment. In: GNSS Environmental Sensing. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-58418-8_9

Download citation

Publish with us

Policies and ethics