Skip to main content

Electromagnetics in Medical Applications: The Cardiopulmonary Stethoscope Journey

  • Chapter
  • First Online:
The World of Applied Electromagnetics

Abstract

Pulmonary edema, caused by abnormal accumulation of fluid in the lungs, is a clinical manifestation of chronic illnesses such as congestive heart failure and kidney failure. Early detection of pulmonary edema is the cornerstone for management of these diseases. Although methods for detection of pulmonary edema are clinically available, they are invasive and noncontinuous. The introduction of noninvasive and continuous methods would be considered by some in the medical community as “the holy grail.” The cardiopulmonary stethoscope (CPS) system was developed to address these needs. The CPS system is a noninvasive device capable of continuous remote monitoring of heart rate, respiration rate, and changes in lung water content. Developed capabilities and features of the CPS system include wearable sensors, mobile-based platform, advanced signal processing techniques for feature extraction, realistic and dynamic 3D modeling, and clinical validation of its capabilities. Clinical validations were performed using animal and isolated lung experiments and testing on healthy populations as well as heart failure and hemodialysis patients. Results from these studies show good agreement with results from clinical standard monitoring procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.F. Iskander, S.S. Stuchly, A time-domain technique for measurement of the Dielectric properties of biological substances. IEEE Trans. Instrum. Meas. 21(4), 425–429 (1972)

    Article  Google Scholar 

  2. C.H. Durney, C.C. Johnson, P.W. Barber, H. Massoudi, M.F. Iskander, S.J. Allen, J.C. Mitchell, Descriptive summary: radiofrequency radiation dosimetry handbook-second edition. Radio Sci. 14(6S), 5–7 (1979)

    Article  Google Scholar 

  3. C.H. Durney, M.F. Iskander, H. Massoudi, C.C. Johnson, An empirical formula for broad-band SAR calculations of Prolate Spheroidal models of humans and animals. IEEE Transactions on Microwave Theory and Techniques 27(8), 758–763 (1979)

    Article  Google Scholar 

  4. M.F. Iskander, C.H. Durney, D.J. Shoff, D.G. Bragg, Diagnosis of pulmonary edema by a surgically noninvasive microwave technique. Radio Sci. 14(6S), 265–269 (1979)

    Article  Google Scholar 

  5. M.F. Iskander, C.H. Durney, An electromagnetic energy coupler for medical applications. Proc. IEEE 67(10), 1463–1465 (1979)

    Article  Google Scholar 

  6. D.J. Shoff, Noninvasive microwave methods for measuring tissue volume in normal dogs after whole blood infusion, M.S. thesis, Department of Electrical Engineering, University of Utah, March 1978

    Google Scholar 

  7. M.F. Iskander, C.H. Durney, Electromagnetic energy coupler/receiver apparatus and method. U.S. Patent 4,240,445, 23 Dec 1980

    Google Scholar 

  8. M.F. Iskander, C.H. Durney, Electromagnetic techniques for medical diagnosis: a review. Proc. IEEE 68(1), 126–132 (1980)

    Article  Google Scholar 

  9. M.F. Iskander, R. Maini, C.H. Durney, D.G. Bragg, A microwave method for measuring changes in lung water content: numerical simulation. IEEE Trans. Biomed. Eng. 28(12), 797–804 (1981)

    Article  Google Scholar 

  10. M.F. Iskander, C.H. Durney, D.G. Bragg, B.H. Ovard, A microwave method for estimating absolute value of average lung water. Radio Sci. 17(5S), 111S–118S (1982)

    Article  Google Scholar 

  11. M.F. Iskander, C.H. Durney, Microwave methods of measuring changes in lung water. Journal of Microwave Power 18(3), 265–275 (1983)

    Article  Google Scholar 

  12. M.F. Iskander, Apparatus and method for measuring lung water content. U.S. Patent 4,488,559, 18 Dec 1984

    Google Scholar 

  13. M.F. Iskander, C.H. Durney, T. Grange, C.S. Smith, Radiometric technique for measuring changes in lung water (short papers). IEEE Transactions on Microwave Theory and Techniques 32(5), 554–556 (1984)

    Article  Google Scholar 

  14. V. Sathiaseelan, M.F. Iskander, G.C.W. Howard, N.M. Bleehen, Theoretical analysis and clinical demonstration of the effect of power pattern control using the annular phased-array hyperthermia system. IEEE Transactions on Microwave Theory and Techniques 34(5), 514–519 (1986)

    Article  Google Scholar 

  15. C. Durney M. Iskander, Antennas for medical applications, in Antenna Handbook Theory, Applications, and Design, 1st edn., Y.T. Lo, S.W. Lee (Eds.) (Springer, New York, 1988), pp. 1729–1788

    Google Scholar 

  16. M.F. Iskander, A.M. Tumeh, Design optimization of interstitial antennas. IEEE Trans. Biomed. Eng. 36(2), 238–246 (1989)

    Article  Google Scholar 

  17. M. C. Staff, Pulmonary edema definition, Mayo Clinic, Jul 2014. [Online]. Available: http://www.mayoclinic.org/diseases-conditions/pulmonary-edema/basics/definition/con-20,022,485. Accessed 10 Jan 10 2017

  18. J. Powell, D. Graham, S. O’Reilly, G. Punton, Acute pulmonary oedema. Nurs. Stand. 30(23), 51–60 (2016)

    Article  Google Scholar 

  19. M.S. Nieminen, V.-P. Harjola, Definition and epidemiology of acute heart failure syndromes. Am. J. Cardiol. 96(6), 5–10 (2005)

    Article  Google Scholar 

  20. Centers for Medicare and Medicaid Services, Medicare & Medicaid statistical supplement. [Online]. Available: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/MedicareMedicaidStatSupp/2007.html. Accessed Jan 2017

  21. U. S. Government Publishing Office, An act Entitled The Patient Protection and Affordable Care Act. Public Law 111–148, 2010. [Online]. Available: https://www.gpo.gov/fdsys/pkg/PLAW-111publ148/pdf/PLAW-111publ148.pdf. Accessed 10 Jan 2017

  22. O. Chioncel et al., The Romanian Acute Heart Failure Syndromes (RO-AHFS) registry. Am. Heart J. 162(1), 142.el–153.e1 (2011)

    Article  Google Scholar 

  23. F. Peacock, Heart failure and acute pulmonary edema in the emergency department, in The Textbook of Emergency Cardiovascular Care and CPR, J. Field (Ed.) (Lippincott Williams & Wilkins, Philadelphia, 2009), pp. 96–113

    Google Scholar 

  24. N.R. Lange, D.P. Schuster, The measurement of lung water. Crit. Care. 3(2), R19–R24 (1999)

    Google Scholar 

  25. B.K. Gehlbach, E. Geppert, The pulmonary manifestations of left heart failure. Chest 125(2), 669–682 (Feb. 2004)

    Article  Google Scholar 

  26. P.D. Snashall, S.J. Keyes, B.M. Morgan, R.J. McAnulty, P.F. Mitchell-Heggs, J.M. Mclvor, K.A. Howlett, The radiographic detection of acute pulmonary oedema. A comparison of radiographic appearances, densitometry and lung water in dogs. Br. J. Radiol. 54(640), 277–288 (1981)

    Article  Google Scholar 

  27. S.G. Sakka, C.C. Ruhl, U.J. Pfeiffer, R. Beale, A. McLuckie, K. Reinhart, A. Meier-Hellmann, Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 26(2), 180–187 (2000)

    Article  Google Scholar 

  28. D.J. van Veldhuisen, F. Braunschweig, V. Conraads, I. Ford, M.R. Cowie, G. Jondeau, J. Kautzner, R.M. Aguilera, M. Lunati, C.M. Yu, B. Gerritse, M. Borggrefe, for the DOT-HF Investigators, Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation 124(16), 1719–1726 (2011)

    Article  Google Scholar 

  29. D.K. Moser, L.V. Doering, M.L. Chung, Vulnerabilities of patients recovering from an exacerbation of chronic heart failure. Am. Heart J. 150(5), 984.e7–984.e13 (2005)

    Article  Google Scholar 

  30. M.F. Iskander, N. Celik, R. Gagarin, G.C. Huang, D.A. Bibb, Microwave stethoscope for measuring cardio-pulmonary vital signs and lung water content. U.S. Patent 9,526,438, Dec 2016

    Google Scholar 

  31. R.R.G. Perron, Noninvasive electromagnetic sensors for continuous monitoring of human vital signs and assessment of lung fluid content, PhD dissertation, Department of Electrical Engineering, College of Engineering, University of Hawaii at Manoa, 2016

    Google Scholar 

  32. A. Pantelopoulos, N.G. Bourbakis, A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(1), 1–12 (2010)

    Article  Google Scholar 

  33. C. Gopalsamy, S. Park, R. Rajamanickam, S. Jayaraman, The Wearable Motherboard? The first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Reality 4(3), 152–168 (1999)

    Article  Google Scholar 

  34. I. Locher, M. Klemm, T. Kirstein, G. Trster, Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag. 29(4), 777–788 (2006)

    Article  Google Scholar 

  35. R.R.G. Perron, G.C. Huang, M.F. Iskander, Textile electromagnetic coupler for monitoring vital signs and changes in lung water content. IEEE Antennas Wirel. Propag. Lett. 14, 151–154 (2015)

    Article  Google Scholar 

  36. Less EMF, Shielding and conductive fabrics. [Online]. Available: http://www.lessemf.com/fabric1.html#321. Accessed 12 Jan 2017

  37. A. Industries, Stainless thin conductive thread. [Online]. Available: https://www.adafruit.com/products/640?gclid=CjwKEAjwlq24BRDMjdK7g8mD6BASJABBl8n3dRwyZRf4rhar3RDzNICdB7xXwsDT10VB5tZikSiTtBoC8Drw_wcB. Accessed 12 Jan 2017

  38. D. Halperin, T.W. Feeley, F.G. Mihm, C. Chiles, D.F. Guthaner, N.E. Blank, Evaluation of the portable chest roentgenogram for quantitating Extravascular lung water in critically ill adults. Chest 88(5), 649–652 (1985)

    Article  Google Scholar 

  39. E. Fernandez-Mondejar, R. Rivera-Fernandez, M. Garccia-Delgado, A. Touma, J. Machado, J. Chavero, Small increases in extravascular lung water are accurately detected by transpulmonary thermodilution. J. Trauma: Injury Infection Crit. Care 59(6), 1420–1424 (2005)

    Article  Google Scholar 

  40. S.G. Sakka, M. Klein, K. Reinhart, A. Meier-Hellmann, Prognostic value of extravascular lung water in critically ill patients. Chest 122(6), 2080–2086 (2002)

    Article  Google Scholar 

  41. G.C. Huang, R. Gagarin, N. Celik, H.S. Youn M.F. Iskander, Wideband EM coupler/applicator design and characterization for the clinical benchmarking tests of microwave stethoscope (MiSt), in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, 2012, pp. 1–2. doi: 10.1109/APS.2012.6349099

  42. N. Celik, R. Gagarin, H.s. Youn, M.F. Iskander, A noninvasive microwave sensor and signal processing technique for continuous monitoring of vital signs. IEEE Antennas Wirel. Propag. Lett. 10, 286–289 (2011)

    Article  Google Scholar 

  43. N. Celik, R. Gagarin, G.C. Huang, M.F. Iskander, B.W. Berg, Microwave stethoscope: development and benchmarking of a vital signs sensor using computer-controlled phantoms and human studies. IEEE Trans. Biomed. Eng. 61(8), 2341–2349 (2014)

    Article  Google Scholar 

  44. E. Charbek, Normal vital signs: normal vital signs, in Medscape, 2015. [Online]. Available: http://emedicine.medscape.com/article/2172054-overview. Accessed 13 Jan 2017

  45. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  46. K.H. Jarman, D.S. Daly, K.K. Anderson, K.L. Wahl, A new approach to automated peak detection. Chemom. Intell. Lab. Syst. 69(1–2), 61–76 (2003)

    Article  Google Scholar 

  47. D. Bibb, R.R.G. Perron, G.C. Huang, M.F. Iskander, Development of a wireless monitoring system for microwave-based comprehensive vital sign measurement. IEEE Antennas Wirel. Propag. Lett. 15, 1249–1252 (2016)

    Article  Google Scholar 

  48. R.R.G. Perron, M.F. Iskander, Dynamic 3D model of human thorax for the assessment of changes in lung fluid content and vital signs, in 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 2016, pp. 1–2

    Google Scholar 

  49. J.F. Lee, Z. Cendes, D.K. Sun, Adaptive mesh refinement, h-version, for solving multiport microwave devices in three dimensions. IEEE Trans. Magn. 36(4), 1596–1599 (2000)

    Article  Google Scholar 

  50. M. Kozlov, R. Turner, A comparison of Ansoft HFSS and CST microwave studio simulation software for multi-channel coil design and SAR estimation at 7 T MRI. PIERS Online 6(4), 395–399 (2010)

    Article  Google Scholar 

  51. D. Means, K. Chan, Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, in Federal Communications Commission, 2001. [Online]. Available: https://transition.fcc.gov/bureaus/oet/info/documents/bulletins/oet65/oet65c.pdf. Accessed 13 Jan 2017

  52. M.J. Mirro, E.W. Rogers, A.E. Weyman, H. Feigenbaum, Angular displacement of the papillary muscles during the cardiac cycle. Circulation 60(2), 327–333 (1979)

    Article  Google Scholar 

  53. J.E. Cotes, D.J. Chinn, M.R. Miller, Lung function: Physiology, Measurement and Application in Medicine (John Wiley & Sons, New York, 2009)

    Google Scholar 

  54. R. Gagarin, H.s. Youn, N. Celik, M. Iskander, Noninvasive microwave technique for hemodynamic assessments, in IEEE Antennas and Propagation Society International Symposium, Toronto, July 2010

    Google Scholar 

  55. Schmid & Partner Engineering AG, DAK » SPEAG, Schmid & partner engineering AG, 2010. [Online]. Available: https://www.speag.com/products/. Accessed 13 Jan 2017

  56. IEEE recommended practice for determining the peak spatial-average Specific Absorption Rate (SAR) in the human head from wireless communications devices: measurement techniques, in IEEE Std 1528–2013 (Revision of IEEE Std 1528–2003), pp. 1–246, 6 Sept 2013

    Google Scholar 

  57. European Committee for Electrotechnical Standardization, CENELEC – EN 50361 Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz–3 GHz), Brussles, Belgium, 2001

    Google Scholar 

  58. IEC, IEC 62209 evaluation of the human exposure to radio frequency fields from handheld and body-mounted wireless communication devices in the frequency range of 30 MHz to 6 GHz: human models instrumentation and procedures, Geneva, Switzerland, 2009

    Google Scholar 

  59. Welch Allyn, Propaq® LT monitor, 2015. [Online]. Available: https://www.welchallyn.com/en/products/categories/patient-monitoring/continuous-monitoring-systems/propaq-lt-monitor.html. Accessed 13 Jan 2017

  60. G.F. Fletcher, G.J. Balady, E.A. Amsterdam, B. Chaitman, R. Eckel, J. Fleg, V.F. Froelicher, A.S. Leon, I.L. Pina, R. Rodney, D.A. Simons-Morton, M.A. Williams, T. Bazzarre, Exercise standards for testing and training: a statement for healthcare professionals from the American heart association. Circulation 104(14), 1694–1740 (2001)

    Article  Google Scholar 

  61. Vernier Software and Technology, Respiration monitor belt > vernier software & technology, 2017. [Online]. Available: http://www.vernier.com/products/sensors/rmb/#section4. Accessed 13 Jan 2017

Download references

Acknowledgments

This work was in collaboration with University of Hawaii John A. Burns School of Medicine and The Queen’s Medical Center. This project was supported by the National Natural Science Foundation (ECCS1340364) and National Institutes of Health (R21HL124457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruthsenne R. G. Perron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Perron, R.R.G., Iskander, M.F., Seto, T.B., Huang, G.C., Bibb, D.A. (2018). Electromagnetics in Medical Applications: The Cardiopulmonary Stethoscope Journey. In: Lakhtakia, A., Furse, C. (eds) The World of Applied Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-319-58403-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58403-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58402-7

  • Online ISBN: 978-3-319-58403-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics