Skip to main content

Real-Time Quantitative Reconstruction Methods in Microwave Imaging

  • Chapter
  • First Online:
The World of Applied Electromagnetics

Abstract

Direct inversion methods, also known as linear inversion methods, such as holography and diffraction tomography are the working horses of microwave imaging. They provide fast qualitative estimates of an object’s shape and electrical contrast. However, these traditional methods cannot be used as linearized solvers at the core of nonlinear iterative reconstruction schemes because of their inability to provide a quantitative estimate of the electromagnetic constitutive parameters. In the past decade, advances have led to two powerful approaches to linear quantitative inversion, specifically developed for microwave imaging based on scattering-parameter data. These two approaches, quantitative microwave holography (QMH) and scattered-power mapping (SPM), provide quantitative images in real time. Thus they add new capability to real-time microwave imaging and offer new linearized core solvers for nonlinear reconstruction schemes. The performance of QMH and SPM is compared utilizing three different strategies of acquiring the resolvent kernel in the forward model: analytical, simulated, and measured. The results ascertain that the quantitative reconstruction is attainable only with experimentally acquired resolvent kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.G. Amin (Ed.), Through-the-Wall Radar Imaging (CRC Press, Boca Raton, FL, 2011)

    Google Scholar 

  2. J. Nanzer, Microwave and Millimeter-wave Remote Sensing for Security Applications (Artech House, Norwood, MA, 2012)

    Google Scholar 

  3. D.J. Daniels, EM Detection of Concealed Targets (Wiley-IEEE Press, Hoboken, NJ, 2009)

    Book  Google Scholar 

  4. R. Zoughi, Microwave Non-destructive Testing and Evaluation (Kluwer, Dordrecht, The Netherlands, 2000)

    Book  Google Scholar 

  5. D.M. Sheen, D.L. McMakin, T.E. Hall, Near-field three-dimensional radar imaging techniques and applications. Appl. Opt. 49(19), E83–E93 (2010)

    Article  Google Scholar 

  6. N.K. Nikolova, Microwave biomedical imaging, in Wiley Encyclopedia of Electrical and Electronics Engineering (published online 25 Apr 2014)

    Google Scholar 

  7. A. Rosen, M.A. Stuchly, A.V. Vorst, Applications of RF/microwaves in medicine. IEEE Trans. Microw. Theory Tech. 50(3), 963–974 (2002)

    Article  Google Scholar 

  8. A.V. Vorst, A. Rosen, Y. Kotsuka, RF/Microwave Interaction with Biological Tissues (Wiley, Hoboken, NJ, 2006)

    Google Scholar 

  9. M. Ravan, R.K. Amineh, N.K. Nikolova, Two-dimensional near-field microwave holography. Inverse Prob. 26(5), 055011 (2010)

    Google Scholar 

  10. R.K. Amineh, A. Khalatpour, H. Xu, Y. Baskharoun, N.K. Nikolova, Three-dimensional near-field microwave holography for tissue imaging. Int. J. Biomed. Imaging, 2012, 291494 (2012)

    Google Scholar 

  11. M. Elsdon, D. Smith, M. Leach, S.J. Foti, Experimental investigation of breast tumor imaging using indirect microwave holography. Microw. Opt. Technol. Lett. 48, 480–482 (2006)

    Article  Google Scholar 

  12. D.M. Sheen, D.L. McMakin, T.E. Hall, Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001)

    Article  Google Scholar 

  13. L. Liu, A. Trehan, N.K. Nikolova, Near-field detection at microwave frequencies based on self-adjoint response sensitivity analysis. Inverse Prob. 26, 105001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Zhang, S. Tu, R. K. Amineh, N. K. Nikolova, Resolution and robustness to noise of the sensitivity-based method for microwave imaging with data acquired on cylindrical surfaces. Inverse Prob. 28(11), 115006 (2012)

    Google Scholar 

  15. E.C. Fear, X. Li, S.C. Hagness, M.A. Stuchly, Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 49(8), 812–822 (2002)

    Article  Google Scholar 

  16. H.B. Lim, N.T.T. Nhung, E.P. Li, N.D. Thang, Confocal microwave imaging for breast cancer detection: delay-multiply-and-sum image reconstruction algorithm. IEEE Trans. Biomed. Eng. 55(6), 1697–1704 (2008)

    Article  Google Scholar 

  17. P.M. Meaney, M.W. Fanning, D. Li, S.P. Poplack, K.D. Paulsen, A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech. 48(11), 1841–1853 (2000)

    Article  Google Scholar 

  18. P. Kosmas, C.M. Rappaport, Time reversal with the FDTD method for microwave breast cancer detection. IEEE Trans. Microw. Theory Tech. 53(7), 2317–2323 (2005)

    Article  Google Scholar 

  19. A.J. Devaney, Mathematical Foundations of Imaging, Tomography and Wave Field Inversion (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  20. W.C. Chew, Y.M. Wang, Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans. Med. Imag. 9(2), 218–225 (1990)

    Article  Google Scholar 

  21. T.J. Cui, W.C. Chew, A.A. Aydiner, S. Chen, Inverse scattering of two-dimensional dielectric objects buried in lossy earth using the distorted Born iterative method. IEEE Trans. Geosci. Remote Sens. 39(2), 339–346 (2001)

    Article  Google Scholar 

  22. A.G. Tijhuis, K. Belkebir, A.C.S. Litman, B.P. de Hon, Multiple-frequency distorted-wave Born approach to 2D inverse profiling. Inverse Prob. 17(6), 1635–1644 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Pastorino, Stochastic optimization methods applied to microwave imaging: a review. IEEE Trans. Antennas Propag. 55(3), 538–548 (2007)

    Article  Google Scholar 

  24. P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, A. Massa, Evolutionary optimization as applied to inverse scattering problems. Inverse Prob. 25, 1–41 (2009)

    MathSciNet  MATH  Google Scholar 

  25. M. Donelli, G. Franceschini, A. Martini, A. Massa, An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems. IEEE Trans. Geosci. Remote Sens. 44(2), 298–312 (2006)

    Article  Google Scholar 

  26. H. Harada, D.J.N. Wall, T. Takenaka, M. Tanaka, Conjugate gradient method applied to inverse scattering problem. IEEE Trans. Antennas Propag. 43(8), 784–792 (1995)

    Article  Google Scholar 

  27. C. Estatico, M. Pastorino, A. Randazzo, An inexact-Newton method for short-range microwave imaging within the second-order Born approximation. IEEE Trans. Geosci. Remote Sens. 43, 2593–2605 (2005)

    Article  Google Scholar 

  28. A. Abubakar, P.M. van den Berg, J.J. Mallorqui, Imaging of biomedical data using a multiplicative regularized contrast source inversion method. IEEE Trans. Microw. Theory Tech. 50(7), 1761–1771 (2002)

    Article  Google Scholar 

  29. D. Tajik, J. Thompson, A.S. Beaverstone, N.K. Nikolova, Real-time quantitative reconstruction based on microwave holography, in IEEE AP-S/URSI International Symposium on Antennas and Propagation, Fajardo, Puerto Rico, June 2016

    Google Scholar 

  30. S. Tu, J.J. McCombe, D.S. Shumakov, N.K. Nikolova, Fast quantitative microwave imaging with resolvent kernel extracted from measurements. Inverse Prob. 31(4), 045007 (2015)

    Google Scholar 

  31. R.K. Amineh, M. Ravan, A. Khalatpour, N.K. Nikolova, Three-dimensional near-field microwave holography using reflected and transmitted signals. IEEE Trans. Antennas Propag. 59(12), 4777–4789 (2011)

    Article  MathSciNet  Google Scholar 

  32. N.K. Nikolova, D.S. Shumakov, A.S. Beaverstone, Obtaining system-specific Green’s functions through measurements: theory and applications in microwave imaging, in IEEE AP-S/URSI International Symposium on Antennas and Propagation, Fajardo, Puerto Rico, June 2016

    Google Scholar 

  33. A.S. Beaverstone, D.S. Shumakov, N.K. Nikolova, Frequency-domain integral equations of scattering for complex scalar responses. IEEE Trans. Microw. Theory Tech. 65(4), 1120–1132

    Google Scholar 

  34. R.K. Amineh, J. McCombe, N.K. Nikolova, Microwave holographic imaging using the antenna phaseless radiation pattern. IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012)

    Article  Google Scholar 

  35. M. Ostadrahimi, P. Mojabi, C. Gilmore, A. Zakaria, S. Noghanian, S. Pistorius, J. LoVetri, Analysis of incident field modeling and incident/scattered field calibration techniques in microwave tomography. IEEE Antennas Wirel. Propag. Lett. 10, 900–903 (2011)

    Article  Google Scholar 

  36. R.K. Amineh, J.J. McCombe, A. Khalatpour, N.K. Nikolova, Microwave holography using point-spread functions measured with calibration objects. IEEE Trans. Instrum. Meas. 64(2), 403–417 (2015)

    Article  Google Scholar 

  37. T.M. Habashy, R.W. Groom, B.R. Spies, Beyond the Born and Rytov approximations: a nonlinear approach to electromagnetic scattering. J. Geophys. Res. Solid Earth 98(B2), 1759–1775 (1993)

    Article  Google Scholar 

  38. M.S. Zhdanov, E. Tartaras, Three-dimensional inversion of multitransmitter electromagnetic data based on the localized quasi-linear approximation. Geophys. J. Int. 148, 506–519 (2002)

    Article  Google Scholar 

  39. D.S.C. Biggs, Accelerated iterative blind deconvolution, PhD thesis, University of Auckland, New Zealand, 1998

    Google Scholar 

  40. T.G. Savelyev, A.G. Yarovoy, Fast imaging by 3-D deconvolution in short-range UWB radar for concealed weapon detection, in Proceedings of the 9th European Radar Conference (2012 EuMA), 31 Oct--2 Nov 2012

    Google Scholar 

  41. G. Strang, Linear Algebra and Its Applications, 4th edn. (Brooks Cole, Belmont, CA, 2005)

    MATH  Google Scholar 

  42. D.S. Shumakov, Comparison of Multi-frequency PSF Normalization Strategies, CEM-R-76 (McMaster University, 2016)

    Google Scholar 

  43. M. Pastorino, Microwave Imaging (Wiley, Hoboken, NJ, 2010)

    Book  Google Scholar 

  44. Emerson and Cuming Microwave Products, a unit of Laird Technologies

    Google Scholar 

  45. Agilent 85070E Dielectric Probe Kit, Keysight Technologies, USA (www.keysight.com)

  46. R.K. Amineh, M. Ravan, J. McCombe, N. K. Nikolova, Three-dimensional microwave holographic imaging employing forward-scattered waves only. Int. J. Antennas Propag. 2013, 897287 (2013)

    Google Scholar 

  47. FEKO Suite 7.0.1 for Altair. EM Software & Systems – S. A. (Pty) Ltd., USA (www.feko.info)

  48. D.S. Shumakov, A.S. Beaverstone, N.K. Nikolova, De-noising algorithm for enhancing microwave imaging. IET J. Eng. doi: 10.1049/joe.2016.0207 (2017)

  49. I.N. Bankman, Enhancement: frequency domain techniques, in Handbook of Medical Imaging (Academic Press, San Diego, 2000), p. 16

    Google Scholar 

  50. D.S. Shumakov, A.S. Beaverstone, N.K. Nikolova, Optimal illumination schemes for near-field microwave imaging. Prog. Electromagn. Res. 157, 93–110 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia K. Nikolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shumakov, D.S., Tajik, D., Beaverstone, A.S., Nikolova, N.K. (2018). Real-Time Quantitative Reconstruction Methods in Microwave Imaging. In: Lakhtakia, A., Furse, C. (eds) The World of Applied Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-319-58403-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58403-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58402-7

  • Online ISBN: 978-3-319-58403-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics