Skip to main content

Radio Propagation Modeling: A Unified View of the Ray-Tracing Image Method Across Emerging Indoor and Outdoor Environments

Abstract

A fundamental approach in the optimal design of wireless communication systems is a proper comprehension of radio wave propagation through wireless channels. As wireless communications become more ubiquitous, new propagation environments emerge and the propagation mechanisms therein are being constantly investigated. The objectives of this chapter are twofold: firstly, to give a succinct review of new and emerging complex environments that require fine-tuning of the propagation models since traditional propagation models that simplify the propagation environment by ignoring the small and fine structures are no longer valid for such complex environments and, secondly, to recount the fundamental concepts of radio propagation modeling and its significance, as well as the basic propagation mechanisms and ray-tracing image method. These fundamental working principles of ray-tracing image method can be utilized both for indoor and outdoor environments because these two settings are governed in essence by the same propagation mechanisms.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-58403-4_13
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-58403-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5
Fig. 13.6
Fig. 13.7
Fig. 13.8
Fig. 13.9
Fig. 13.10
Fig. 13.11
Fig. 13.12
Fig. 13.13

References

  1. M.F. Iskander, Z. Yun, Propagation prediction models for wireless communication systems. IEEE Trans. Microwave Theory Tech. 50(3), 662–673 (2002)

    CrossRef  Google Scholar 

  2. H.L. Bertoni, Radio Propagation for Modern Wireless Systems (Prentice–Hall, Upper Saddle River, NJ, 2000), pp. 2–55

    Google Scholar 

  3. R.Y. Kim, J.S. Kwak, K. Etemad, WiMAX femtocells: requirements, challenges, and solutions. IEEE Commun. Mag. 47(9), 84–91 (2009)

    CrossRef  Google Scholar 

  4. C.L. Holloway, P.L. Perini, R.R. DeLyser, K.C. Allen, Analysis of composite walls and their effects on short-path propagation modeling. IEEE Trans. Veh. Technol. 46(3), 730–738 (1997)

    CrossRef  Google Scholar 

  5. T.S. Rappaport, Wireless Communications: Principles and Practice (Second Edition). (Prentice–Hall, Upper Saddle River, NJ, 2002), pp. 157–167

    Google Scholar 

  6. H. Hashemi, The indoor radio propagation channel. Proc. IEEE 81(7), 943–968 (1993)

    CrossRef  Google Scholar 

  7. C.F. Yang, B.C. Wu, A ray-tracing/PMM hybrid approach for determining wave propagation through periodic structures. IEEE Trans. Veh. Technol. 50(3), 791–795 (2001)

    CrossRef  Google Scholar 

  8. C.H. Teh, H.T. Chuah, Propagation measurement in a multi-floor stairwell for model validation. Paper presented at the 28th International Union of Radio Science General Assembly, New Delhi, Oct 2005.

    Google Scholar 

  9. C.H. Teh, H.T. Chuah, An improved image-based propagation model for indoor and outdoor communication channels. J. Electromagn. Waves Appl. 17(1), 31–50 (2003)

    CrossRef  Google Scholar 

  10. W.M. Smith, Urban propagation modeling for wireless systems, PhD dissertation, Stanford University, United States, Feb 2004

    Google Scholar 

  11. W. Honcharenko, H.L. Bertoni, Transmission and reflection characteristics at concrete block walls in the UHF bands proposed for future PCS. IEEE Trans. Antennas Propag. 42(2), 232–239 (1994)

    CrossRef  Google Scholar 

  12. M.O. Al-Nuaimi, M.S. Ding, Prediction models and measurements of microwave signals scattered from buildings. IEEE Trans. Antennas Propag. 42(8), 1126–1137 (1994)

    CrossRef  Google Scholar 

  13. O. Landron, M.J. Feuerstein, T.S. Rappaport, A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment. IEEE Trans. Antennas Propag. 44(3), 341–351 (1996)

    CrossRef  Google Scholar 

  14. I. Cuinas, M.G. Sanchez, Measuring, modeling, and characterizing of indoor radio channel at 5.8 GHz. IEEE Trans. Veh. Technol. 50(2), 526–535 (2001)

    CrossRef  Google Scholar 

  15. Z. Zhang, R. Sorensen, Z. Yun, M.F. Iskander, A ray-tracing approach for indoor/outdoor propagation through window structures. IEEE Trans. Antennas Propag. 50(5), 742–748 (2002)

    CrossRef  Google Scholar 

  16. D. Pena, R. Feick, H.D. Hristov, W. Grote, Measurement and modeling of propagation losses in brick and concrete walls for the 900-MHz band. IEEE Trans. Antennas Propag. 51(1), 31–39 (2003)

    CrossRef  Google Scholar 

  17. P. Pongsilamanee, H.L. Bertoni, Specular and nonspecular scattering from building facades. IEEE Trans. Antennas Propag. 52(7), 1879–1889 (2004)

    CrossRef  Google Scholar 

  18. A.G. Dimitriou, G.D. Sergiadis, Architectural features and urban propagation. IEEE Trans. Antennas Propag. 54(3), 774–784 (2006)

    CrossRef  Google Scholar 

  19. V. Degli-Esposti, F. Fuschini, E.M. Vitucci, G. Falciasecca, Measurement and modelling of scattering from buildings. IEEE Trans. Antennas Propag. 55(1), 143–153 (2007)

    CrossRef  Google Scholar 

  20. I. Cuinas, D. Martinez, M.G. Sanchez, A.V. Alejos, Modelling and measuring reflection due to flat dielectric surfaces at 5.8 GHz. IEEE Trans. Antennas Propag. 55(4), 1139–1147 (2007)

    CrossRef  Google Scholar 

  21. S. Kwon, I.-S. Koh, H.-W. Moon, J.-W. Lim, Y.J. Yoon, Model of inhomogeneous building façade for ray tracing method. Electron. Lett. 44(23), 1341–1342 (2008)

    Google Scholar 

  22. S.Y. Lim, Z. Yun, M.F. Iskander, Modeling scattered EM field from a periodic building facade, in Proceedings of the IEEE International Symposium on Antennas and Propagation (AP-S), Toronto, 11–17 July 2010

    Google Scholar 

  23. S.Y. Lim, Z. Yun, M.F. Iskander, Modeling scattered EM field from a façade-like structure for wireless communications, in Proceedings of the IEEE International Symposium on Antennas and Propagation (AP-S) and URSI, Spokane, 3–9 July 2011

    Google Scholar 

  24. S.Y. Lim, Z. Yun, J.M. Baker, N. Celik, H. Youn, M.F. Iskander, Propagation modeling and measurement for a multi-floor stairwell. IEEE Antennas Wirel. Propag. Lett. 8, 583–586 (2009)

    CrossRef  Google Scholar 

  25. S.Y. Lim, Z. Yun, M.F. Iskander, Propagation measurement and modeling for indoor stairwells at 2.4 and 5.8 GHz. IEEE Trans. Antennas Propag. 62(9), 4754–4761 (2014)

    CrossRef  Google Scholar 

  26. R.G. Kouyoumjian, P.H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62, 1448–1461 (1974)

    CrossRef  Google Scholar 

  27. W.D. Burnside, K.W. Burgener, High frequency scattering by thin lossless dielectric slab. IEEE Trans. Antennas Propag. 31(1), 104–110 (1983)

    CrossRef  Google Scholar 

  28. P. Bernardi, R. Cicchetti, O. Testa, A three-dimensional UTD heuristic diffraction coefficient for complex penetrable wedges. IEEE Trans. Antennas Propag. 50(2), 217–224 (2002)

    CrossRef  Google Scholar 

  29. A. H. Systems, Inc. Double ridge guide horn antenna. Available: http://www.ahsystems.com/catalog/SAS-571.php

  30. L-Com 2.4 GHz 8dBi Omnidirectional Antenna. Available: http://www.l-com.com/wireless-antenna-24-ghz-8-dbi-omnidirectional-antenna-n-female-connector

  31. L-Com 5.8 GHz 8 dBi Omnidirectional Wireless LAN Antenna. Available: http://www.l-com.com/wireless-antenna-58-ghz-8-dbi-omnidirectional-wireless-lan-antenna

  32. S.Y. Lim, C.C. Pu, Measurement of a tunnel-like structure for wireless communications. IEEE Antennas Propag. Mag. 54(3), 148–156 (2012)

    CrossRef  Google Scholar 

  33. S.Y. Lim, A.K. Awelemdy, Z. Yun, M.F. Iskander, Experimental study of propagation characteristics in an open-trench drain. IEEE Antennas Wirel. Propag. Lett. 15, 60–63 (2016)

    CrossRef  Google Scholar 

  34. Z. Yun, Z. Zhang, M.F. Iskander, A ray-tracing method based on the triangular grid approach and application to propagation prediction in urban environments. IEEE Trans. Antennas Propag. 50(5), 750–758 (2002)

    CrossRef  Google Scholar 

  35. Z. Yun, M.F. Iskander, Z. Zhang, Fast ray tracing procedure using space division with uniform rectangular grid. Electron. Lett. 36(10), 895–897 (2000)

    CrossRef  Google Scholar 

  36. Z. Zhang, Z. Yun, M.F. Iskander, Ray tracing method for propagation models in wireless communications systems. Electron. Lett. 36(5), 464–465 (2000)

    CrossRef  Google Scholar 

  37. C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, Hoboken, NJ, 1989), pp. 743–850

    Google Scholar 

  38. J.B. Keller, The geometric optics theory of diffraction. McGill Symp. Microwave Optics 2, 207–210 (1959)

    Google Scholar 

  39. J.B. Keller, Geometrical theory of diffraction. J. Opt. Soc. Am. 52(2), 116–130 (1962)

    Google Scholar 

  40. J.B. Keller, This week’s citation classic, Institute Mathematical Sciences, New York University, cc/no. 14, Apr 1980

    Google Scholar 

  41. R.J. Luebbers, Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss. IEEE Trans. Antennas Propag. 32(1), 70–76 (1984)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Yong Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lim, S.Y., Yun, Z., Iskander, M.F. (2018). Radio Propagation Modeling: A Unified View of the Ray-Tracing Image Method Across Emerging Indoor and Outdoor Environments. In: Lakhtakia, A., Furse, C. (eds) The World of Applied Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-319-58403-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58403-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58402-7

  • Online ISBN: 978-3-319-58403-4

  • eBook Packages: EngineeringEngineering (R0)