Al-Si Alloys pp 111-132 | Cite as

Liquid and Semisolid Melt Treatment: Electromagnetic Stirring

  • Francisco C. Robles Hernandez
  • Jose Martin Herrera Ramírez
  • Robert Mackay
Chapter

Abstract

In this chapter are explained the principles of electromagnetism and their applications in stirring and/or vibration in liquid or semi-solids alloys as they apply to the Al-Si system with the aim to improve its soundness and overall mechanical properties. It also included an introduction to mechanical and ultrasonic stirring with a detailed description of the effects on microstructure. A key aspect in the chapter is the modification of silicon, particularly primary Si in Al-Si hypereutectic alloys that is quite unique due to the potential to treat them in the liquid state.

Keywords

Electromagnetic stirring Electromagnetic stirring and vibration Primary Si Si agglomerates Microstructure modification Mechanical properties 

References

  1. 1.
    Griffiths, W.D., and D.G. McCartney. 1997. The effect of electromagnetic stirring on macrostructure and macrosegregation in the aluminium alloy 7150. Materials Science and Engineering A 222 (2): 140–148.  https://doi.org/10.1016/S0921-5093(96)10527-X.CrossRefGoogle Scholar
  2. 2.
    Vives, C. 1992. Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes. Metallurgical Transactions B 23 (2): 189–206.CrossRefGoogle Scholar
  3. 3.
    Easton, M.A., and D.H. StJohn. 2013. The effect of alloy content on the grain refinement of aluminium alloys. In Essential readings in light metals, 393–399. Springer.Google Scholar
  4. 4.
    Quested, T.E., A.T. Dinsdale, and A.L. Greer. 2005. Thermodynamic modelling of growth-restriction effects in aluminium alloys. Acta Materialia 53 (5): 1323–1334.  https://doi.org/10.1016/j.actamat.2004.11.024.CrossRefGoogle Scholar
  5. 5.
    Quested, T.E., and A.L. Greer. 2003. Growth-restriction effects in grain refinement of aluminium. In Light metals 2003, ed. P. Crepeau, 827. Warrendale: TMS.Google Scholar
  6. 6.
    Kearns, M.A., and P.S. Cooper. 1997. Effects of solutes on grain refinement of selected wrought aluminium alloys. Materials Science and Technology 13 (8): 650–654.CrossRefGoogle Scholar
  7. 7.
    Johnsson, M. 1994. Influence of Si and Fe on the grain refinement of aluminium. Zeitschrift für Metallkunde 85 (11): 781–785.Google Scholar
  8. 8.
    Desnain, P., Y. Fautrelle, J.L. Meyer, J.P. Riquet, and F. Durand. 1990. Prediction of equiaxed grain density in multicomponent alloys, stirred electromagnetically. Acta Metallurgica et Materialia 38 (8): 1513–1523.  https://doi.org/10.1016/0956-7151(90)90119-2.CrossRefGoogle Scholar
  9. 9.
    Vives, C., and C. Perry. 1986. Effects of electromagnetic stirring during the controlled solidification of tin. International Journal of Heat and Mass Transfer 29 (1): 21–33.  https://doi.org/10.1016/0017-9310(86)90031-1.CrossRefGoogle Scholar
  10. 10.
    Mondolfo, L.F., and J.G. Barlock. 1975. Effect of superheating on structure of some aluminum alloys. Metallurgical Transactions B 6 (4): 565–572.  https://doi.org/10.1007/BF02913849.CrossRefGoogle Scholar
  11. 11.
    Yamada, Sen-ichi, Keitarou Kobayashi, Hong Gang Ji, and Shigeo Tsukahara. 2002. Morphology of primary silicon crystals during isothermal holding at solid-liquid co-existent temperature on hyper-eutectic Al–Si alloys. Journal of Japan Institute of Light Metals 52 (4): 174–178.  https://doi.org/10.2464/jilm.52.174.CrossRefGoogle Scholar
  12. 12.
    Lojen, G., A. Krizman, and I. Anzel. 1997. Spheroidization of silicon in hypereutectic Al-Si alloys. Livarski Vestnik 44: 1–8.Google Scholar
  13. 13.
    Bergsma, S.C., et al. 1997. Semi-solid thermal transformations of Al−Si alloys and the resulting mechanical properties. Materials Science and Engineering A 237 (1): 24–34.  https://doi.org/10.1016/S0921-5093(97)00112-3.CrossRefGoogle Scholar
  14. 14.
    Perry, T. 1965. Ladle degassing with induction stirring and high vacuum. Iron Steel Engineering 42 (10): 89–94.Google Scholar
  15. 15.
    Johnston, W. C., G. R. Kotler, S. Ohara, H. V. Ashcom, and W. A. Tiller. 1965. Grain refinement via electromagnetic stirring during solidification. Transactions of the Metallurgical Society of AIME 233: 1856–1860.Google Scholar
  16. 16.
    Pakhomov, A.I. 1965. Effect of electromagnetic mixing on the content on gases in electric smelting of steel. Leningradskogo Politekhnicheskogo Instituta 235: 54–68.Google Scholar
  17. 17.
    Chekin, B.V. 1965. How electromagnetic forces help to remove non-metallic inclusions from molten metals. Trudy Donetsk N-I Inst. Chern. Met. 2: 127–136.Google Scholar
  18. 18.
    Nawakowskij, W.M., E.F. Lapschina, and M.S. Bloch. 1965. Importance of liquid stirring in passivation of iron and cast iron in sulfuric acids. The Journal of Physical Chemistry 230: 313–326.Google Scholar
  19. 19.
    Vives, C. 1990. Hydrodynamic, thermal and crystallographical effects of an electromagnetically driven rotating flow in solidifying aluminium alloy melts. International Journal of Heat and Mass Transfer 33 (12): 2585–2598.  https://doi.org/10.1016/0017-9310(90)90194-Y.CrossRefGoogle Scholar
  20. 20.
    Vives, C. 1989. Electromagnetic refining of aluminum-alloys by the crem process. Part I. Working principle and metallurgical results. Metallurgical Transactions B: Process Metallurgy 20 (5): 623–629.  https://doi.org/10.1007/Bf02655919.CrossRefGoogle Scholar
  21. 21.
    Dahle, A.K., and L. Arnberg. 1997. Development of strength in solidifying aluminium alloys. Acta Materialia 45 (2): 547–559.  https://doi.org/10.1016/S1359-6454(96)00203-0.CrossRefGoogle Scholar
  22. 22.
    Vivès, C. 1996. Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: Part II. Solidification in the presence of colinear variable and stationary magnetic fields. Metallurgical and Materials Transactions B 27 (3): 457–464.  https://doi.org/10.1007/BF02914910.CrossRefGoogle Scholar
  23. 23.
    Adam, F., and C. Vives. 1998. Net shape forming of electromagnetically elaborated semisolid metal matrix composites. Science and Engineering of Composite Materials 7 (3): 223–229.CrossRefGoogle Scholar
  24. 24.
    Yang, Y.S., and C.Y.A. Tsao. 1997. Viscosity and structure vibrations of Al-Si alloy in the semisolid state. Journal of Materials Science 32 (8): 2087–2092.CrossRefGoogle Scholar
  25. 25.
    Haoran, G., M. Jiaji, and B. Xiufang. 1997. Thermal rate treatment and its effect on modifi cation of Al-Si alloy. Transactions of Nonferrous Metals Society of China 7 (1): 137–141.Google Scholar
  26. 26.
    Vivès, C. 1998. Grain refinement in aluminum alloys by means of electromagnetic vibrations including cavitation phenomena. JOM–e 50 (2).Google Scholar
  27. 27.
    Chen, J.S.J., K. Zhang, M.N.O. Sadiku, and A.A. Tseng. 1998. The electromagnetic enhancement of melt spinning and strip casting. JOM–e 50 (2).Google Scholar
  28. 28.
    Gabalthular, J.P., S. Steeb, and P. Laparner. 1979. Über die Struktur von Aluminium-Silizium-Schmelzen. Zeitschrift für Naturforschung 34a: 1305–1315.Google Scholar
  29. 29.
    Ward, P.J., H.V. Atkinson, P.R.G. Anderson, L.G. Elias, B. Garcia, L. Kahlen, and J.M. Rodriguez-ibabe. 1996. Semi-solid processing of novel MMCs based on hypereutectic aluminium-silicon alloys. Acta Materialia 44 (5): 1717–1727.  https://doi.org/10.1016/1359-6454(95)00356-8.CrossRefGoogle Scholar
  30. 30.
    Zavaras, A.A., R. Sobolewski, and C.B. Griffith. 1977. Continuous casting of metal using electromagnetic stirring. Google Patents: USA. p. 10.Google Scholar
  31. 31.
    Dantzig, J.A., and D.E. Tyler. 1984. Mold for use in metal or metal alloy casting systems. Google Patents: USA. p. 15.Google Scholar
  32. 32.
    Dussart, B. 1979. Continuous-casting mould provided with an electromagnetic stirring device. Google Patents: USA. p. 4.Google Scholar
  33. 33.
    Dussart, B.E.A.. 1978. Process for electromagnetic stirring. Google Patents: USA. p. 5.Google Scholar
  34. 34.
    Kasprzak, M.S., W. Kasprzak, and J.H. Sokolowski. 2009. Electromagnetic method and apparatus for treatment of engineering materials, products, and related processes. Google Patents: Canada. p. 16.Google Scholar
  35. 35.
    Long, L.J., and J.A. Henrickson. 1989. Counterflow electromagnetic stirring method and apparatus for continuous casting. Google Patents: USA. p. 22.Google Scholar
  36. 36.
    Metz, P. 1994. Electromagnetic stirring process for continuous casting. Google Patents: USA. p. 7.Google Scholar
  37. 37.
    Mori, T., K. Ayata, J. Miyazaki, T. Fujimoto, and H. Nakata. 1985. Electromagnetic stirring method in horizontal continuous casting process. Google Patents. p. 8.Google Scholar
  38. 38.
    Mulcahy, J.A., and J. Szekely. 1990. Magnetic control of molten metal systems. Google Patents: USA. p. 6.Google Scholar
  39. 39.
    Saeki, M., T. Nishio, and H. Omura. 1989. Electromagnetic stirring method. Google Patents: USA. p. 6.Google Scholar
  40. 40.
    Schmid, M. 1992. Electromagnetic stirrer for continuous casting. Google Patents: USA. p. 6.Google Scholar
  41. 41.
    Vives, C. 1985. Process for casting metals in which magnetic fields are employed. Google Patents: USA. p. 6.Google Scholar
  42. 42.
    Vives, C. 1987. Process for the electromagnetic casting of metals involving the use of at least one magnetic field which differs from the field of confinement. Google Patents: USA.Google Scholar
  43. 43.
    Whittington, K.R. 1984. Electromagnetic stirring. Google Patents: USA. p. 9.Google Scholar
  44. 44.
    Radjai, A., and K. Miwa. 2002. Structural refinement of gray iron by electromagnetic vibrations. Metallurgical and Materials Transactions A 33 (9): 3025–3030.  https://doi.org/10.1007/s11661-002-0287-y.CrossRefGoogle Scholar
  45. 45.
    Radjai, A., K. Miwa, and T. Nishio 1998. An investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloy melt. Metallurgical and Materials Transactions A 29 (5): 1477–1484.  https://doi.org/10.1007/s11661-998-0363-z.CrossRefGoogle Scholar
  46. 46.
    Radjai, A., and K. Miwa. 2000. Effects of the intensity and frequency of electromagnetic vibrations on the microstructural refinement of hypoeutectic Al-Si alloys. Metallurgical and Materials Transactions A 31 (3): 755–762.  https://doi.org/10.1007/s11661-000-0017-2.CrossRefGoogle Scholar
  47. 47.
    Spencer, D.B. 1971. Rheology of liquid-solid mixtures of lead-tin. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar
  48. 48.
    Moon, D.B. 1990. Massachusetts Institute of Technology: Cambridge, MA.Google Scholar
  49. 49.
    Robles Hernández, F.C., J.H. Sokolowski, and W. Kasprzak. 2004. Electromagnetic refinement of the 319 aluminum structure. Science Forum Light Metals: 583–592.Google Scholar
  50. 50.
    Zhang, W.Q., Y.S. Yang, Q.M. Liu, Y.F. Zhu, and Z.Q. Hu. 1998. Structural transition and macrosegregation of Al-Cu eutectic alloy solidified in the electromagnetic centrifugal casting process. Metallurgical and Materials Transactions A 29 (1): 404–408.  https://doi.org/10.1007/s11661-998-0193-z.CrossRefGoogle Scholar
  51. 51.
    Li, B.Q. 1998. Solidification processing of materials in magnetic fields. JOM–e (2): 50.Google Scholar
  52. 52.
    Lu, D., Y. Jiang, G. Guan, R. Zhou, Z. Li, and R. Zhou. 2007. Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring. Journal of Materials Processing Technology 189 (1–3): 13–18.  https://doi.org/10.1016/j.jmatprotec.2006.12.008.CrossRefGoogle Scholar
  53. 53.
    Kang, H.S., W.Y. Yoon, K.H. Kim, M.H. Kim, and Y.P. Yoon. 2005. Microstructure selections in the undercooled hypereutectic Al–Si alloys. Materials Science and Engineering A 404 (1–2): 117–123.  https://doi.org/10.1016/j.msea.2005.05.041.CrossRefGoogle Scholar
  54. 54.
    Lipton, J., W. Kurz, and R. Trivedi. 1987. Rapid dendrite growth in undercooled alloys. Acta Metallurgica 35 (4): 957–964.  https://doi.org/10.1016/0001-6160(87)90174-X.CrossRefGoogle Scholar
  55. 55.
    Abramov, V., O. Abramov, V. Bulgakov, and F. Sommer. 1998. Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator. Materials Letters 37 (1–2): 27–34.  https://doi.org/10.1016/S0167-577X(98)00064-0.CrossRefGoogle Scholar
  56. 56.
    Robles-Hernández, F.C. 2004. Improvement in functional characteristics of Al-Si cast components through the utilization of a novel electromagnetic treatment of liquid melts, 251. Windsor: Mechanical Engineering, University of Windsor.Google Scholar
  57. 57.
    Bian, X., and W. Wang. 2000. Thermal-rate treatment and structure transformation of Al–13 wt.% Si alloy melt. Materials Letters 44 (1): 54–58.  https://doi.org/10.1016/S0167-577X(00)00011-2.CrossRefGoogle Scholar
  58. 58.
    Djurdjevic, M.B., W. Kasprzak, C.A. Kierkus, W.T. Kierkus, and J.H. Sokolowski. 2001. Quantification of Cu enriched phases in synthetic 3XX aluminum alloys using the thermal analysis technique. AFS Transactions 16: 1–12.Google Scholar
  59. 59.
    Kapranos, P., D.H. Kirkwood, H.V. Atkinson, J.T. Rheinlander, J.J. Bentzen, P.T. Toft, C.P. Debel, G. Laslaz, L. Maenner, S. Blais, J.M. Rodriguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta, and A. Giese. 2003. Thixoforming of an automotive part in A390 hypereutectic Al–Si alloy. Journal of Materials Processing Technology 135 (2–3): 271–277.  https://doi.org/10.1016/S0924-0136(02)00857-9.CrossRefGoogle Scholar
  60. 60.
    Gruzleski, J.E. 2000. Microstructure development during metal casting, 238. Des Plaines: American Foundrymen’s Society.Google Scholar
  61. 61.
    McDonald, S.D., K. Nogita, and A.K. Dahle. 2004. Eutectic nucleation in Al–Si alloys. Acta Materialia 52 (14): 4273–4280.  https://doi.org/10.1016/j.actamat.2004.05.043.CrossRefGoogle Scholar
  62. 62.
    Callister, W.D. 2007. Materials science and engineering: An introduction. 7th ed. 832. New York: Wiley.Google Scholar
  63. 63.
    Porter, D.A., and K.E. Easterling. 2001. Phase transformations in metals and alloys. 2nd ed. Boca Raton: CRC Press.Google Scholar
  64. 64.
    Evans, E.L., C.B. Alcock, and O. Kubaschewski, eds. 1967. Metallurgical thermochemistry. 4th ed. Oxford, UK/New York: Pergamon Press.Google Scholar
  65. 65.
    Wang, F., Z. Zhang, Y. Ma, and Y. Jin. 2004. Effect of Fe and Mn additions on microstructure and wear properties of spray-deposited Al–20Si alloy. Materials Letters 58 (19): 2442–2446.  https://doi.org/10.1016/j.matlet.2004.02.027.CrossRefGoogle Scholar
  66. 66.
    Narayanan, L.A., F.H. Samuel, and J.E. Gruzleski. 1992. Thermal analysis studies on the effect of cooling rate on the microstmcture of 319 aluminum alloy. AFS Transactions 100: 383–391.Google Scholar
  67. 67.
    Kierkus, W.T., and J.H. Sokolowski. 1999. Recent advances in cooling curve analysis: A new method of determining the ‘Base Line’ Equation. AFS Transactions 66: 161–167.Google Scholar
  68. 68.
    Polishchuck, V.P., and N.R. Aranova. 1965. Trudy Donetsk N-I Inst. Chern. Met. 2: 146–152.Google Scholar
  69. 69.
    Nafisi, S., et al. 2004. Advances in lightweight automotive castings and wrought aluminum alloys. In SAE world congress. Detroit: Society of Automotive Engineers.Google Scholar
  70. 70.
    Barclay, R.S., P. Niessen, and H.W. Kerr. 1973. Halo formation during unidirectional solidification of off-eutectic binary alloys. Journal of Crystal Growth 20 (3): 175–182.  https://doi.org/10.1016/0022-0248(73)90001-8.CrossRefGoogle Scholar
  71. 71.
    Sadigh, B., M. Dzugutov, and S.R. Elliott. 1999. Vacancy ordering and medium-range structure in a simple monatomic liquid. Physical Review B 59 (1): 1–4.CrossRefGoogle Scholar
  72. 72.
    Spittle, J.A., J.M. Keeble, and M.A. Meshhedani. 1997. The grain refinement of Al-Si foundry alloys. TMS Light Metals: 795–800.Google Scholar
  73. 73.
    Baez, J.C., C. Gonzalez, M.R. Chavez, M. Castro, and J. Juarez. 2004. Fourier thermal analysis of the solidification kinetics in A356/SiCp cast composites. Journal of Materials Processing Technology 153–154: 531–536.  https://doi.org/10.1016/j.jmatprotec.2004.04.119.CrossRefGoogle Scholar
  74. 74.
    Cruz, H., C. Gonzalez, A. Juárez, M. Herrera, and J. Juarez. 2006. Quantification of the microconstituents formed during solidification by the Newton thermal analysis method. Journal of Materials Processing Technology 178 (1–3): 128–134.  https://doi.org/10.1016/j.jmatprotec.2006.03.152.CrossRefGoogle Scholar
  75. 75.
    Backerud, L., P. Gustafson, and M. Johnsson. 1991. Grain refining mechanisms in aluminium as a result of additions of titanium and boron, Part I. Aluminum 67 (9): 910–915.Google Scholar
  76. 76.
    Robles Hernández, F.C., and J.H. Sokolowski. 2005. Identification of silicon agglomerates in quenched Al-Si hypereutectic alloys from liquid state. Advanced Engineering Materials 7 (11): 1037–1043.CrossRefGoogle Scholar
  77. 77.
    Robles Hernandez, F.C., J.H. Sokolowski, and J.D.J. Cruz Rivera. 2007. Micro-Raman analysis of the Si particles present in Al-Si hypereutectic alloys in liquid and semi-solid states. Advanced Engineering Materials 9 (1–2): 46–51. https://doi.org/10.1002/adem.200600173.
  78. 78.
    Yu, L., X. Liu, H. Ding, and X. Bian. 2007b. A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB2 in near eutectic Al–Si alloy. Journal of Alloys and Compounds 432 (1–2): 156–162.  https://doi.org/10.1016/j.jallcom.2006.06.005.CrossRefGoogle Scholar
  79. 79.
    Yu, L., X. Liu, H. Ding, and X. Bian. 2007a. A new nucleation mechanism of primary Si by like-peritectic coupling of AlP and Al4C3 in near eutectic Al–Si alloy. Journal of Alloys and Compounds 429 (1–2): 119–125.  https://doi.org/10.1016/j.jallcom.2006.04.011.CrossRefGoogle Scholar
  80. 80.
    Xiufang, B., and Q. Jingyu. 2004. Aluminium alloys: Their physical and mechanical properties. In 9th International Conference on Aluminium Alloys (ICAA9). North Melbourne: Institute of Materials Engineering Australasia.Google Scholar
  81. 81.
    Xiunanfang, B., Z. Guohua, Z. Shengxu, and M. Jiaji. 1992. Cast Metals 5 (1): 39–42.CrossRefGoogle Scholar
  82. 82.
    Wang, W., X. Bian, J. Qin, and S.I. Syliusarenko. 2000. The atomic-structure changes in Al-16 pct Si alloy above the liquidus. Metallurgical and Materials Transactions A 31 (9): 2163–2168.  https://doi.org/10.1007/s11661-000-0134-y.CrossRefGoogle Scholar
  83. 83.
    Wang, W., X. Bian, J. Qin, and T. Fan. 2000. Study on atomic density changes in the liquid Al-Si alloys by X-ray diffraction method. Journal of Materials Science Letters 19 (17): 1583–1585.  https://doi.org/10.1023/A:1006741626728.CrossRefGoogle Scholar
  84. 84.
    Robles Hernández, F.C., and J.H. Sokolowski. 2006. Thermal analysis and microscopical characterization of Al–Si hypereutectic alloys. Journal of Alloys and Compounds 419 (1–2): 180–190.  https://doi.org/10.1016/j.jallcom.2005.07.077.CrossRefGoogle Scholar
  85. 85.
    Ashurst, W.T., A.R. Kerstein, R.M. Kerr, and C.H. Gibson. 1987. Alignment of vorticity and scalar gradient with strain rate in simulated navier-stokes turbulence. Physics of Fluids 30 (8): 2343–2353.  https://doi.org/10.1063/1.866513.Google Scholar
  86. 86.
    Lee, P.D., A. Chirazi, R.C. Atwood, and W. Wang. 2004. Multiscale modelling of solidification microstructures, including microsegregation and microporosity, in an Al-Si-Cu alloy. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 365 (1–2): 57–65.  https://doi.org/10.1016/j.msea.2003.09.007.CrossRefGoogle Scholar
  87. 87.
    Bhat, M.S., D.R. Poirier, J.C. Heinrich, and D. Nagelhout. 1994. Permeability normal to columnar dendrites at high fraction liquid. Scripta Metallurgica et Materialia 31 (3): 339–344.  https://doi.org/10.1016/0956-716x(94)90293-3.CrossRefGoogle Scholar
  88. 88.
    Fu, H., M. Dehsara, M. Krivilyov, S.D. Mesarovic, and D.P. Sekulic. 2016. Kinetics of the molten Al-Si triple line movement during a brazed joint formation. Journal of Materials Science 51 (4): 1798–1812.  https://doi.org/10.1007/s10853-015-9550-7.CrossRefGoogle Scholar
  89. 89.
    Robles Hernández, F.C., and J.H. Sokolowski. 2005. Novel image analysis to determine the si modification for hypoeutectic and hypereutectic Al-Si alloys. JOM 57 (11): 48–53.  https://doi.org/10.1007/s11837-005-0027-z.CrossRefGoogle Scholar
  90. 90.
    Veldman, N.L.M., A.K. Dahle, D.H. St John, and L. Arnberg. 2001. Dendrite coherency of Al-Si-Cu alloys. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 32 (1): 147–155.  https://doi.org/10.1007/s11661-001-0110-1.CrossRefGoogle Scholar
  91. 91.
    Chai, G.C., L. Backerud, T. Rolland, and L. Arnberg. 1995. Dendrite coherency during equiaxed solidification in binary aluminum-alloys. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 26 (4): 965–970.  https://doi.org/10.1007/Bf02649093.CrossRefGoogle Scholar
  92. 92.
    Qiao, J., X. Song, X. Bian, L. Zhu, and Q. Zhang. 2002. Application of AI-P master alloy to AI-Si piston alloy. Special Casting & Nonferrous Alloys: 43–45.Google Scholar
  93. 93.
    Xiufang, Bian, Wang Weimin, and Qin Jingyu. 2001. Liquid structure of Al–12.5% Si alloy modified by antimony. Materials Characterization 46 (1): 25–29.  https://doi.org/10.1016/S1044-5803(00)00089-9.CrossRefGoogle Scholar
  94. 94.
    Eskin, G.I. 1998. Ultrasonic treatment of light alloy melts. 1st ed. CRC Press Taylor and Francis Group.Google Scholar
  95. 95.
    DeWolf, I. 1996. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semiconductor Science and Technology 11 (2): 139–154.CrossRefGoogle Scholar
  96. 96.
    Djurdjevic, M., H. Jiang, and J. Sokolowski. 2001. On-line prediction of aluminum–silicon eutectic modification level using thermal analysis. Materials Characterization 46 (1): 31–38.  https://doi.org/10.1016/S1044-5803(00)00090-5.CrossRefGoogle Scholar
  97. 97.
    Djurdjevic, M.B., W.T. Kierkus, G.E. Byczynski, and J.H. Sokolowski. 1998. Calculation of liquidus temperature for aluminum 3XX series of alloys. American Foundry Society Transactions 47: 143–147.Google Scholar
  98. 98.
    Djurdjevic, M.B., J.H. Sokolowski, and T.J. Stockwell. 1998. Control of the aluminum-silicon alloy solidification process using thermal analysis. Journal of Metallurgy 4: 237–248.Google Scholar
  99. 99.
    Robles Hernández, F.C., and J.H. Sokolowski. 2006. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al–Si hypereutectic alloys. Journal of Alloys and Compounds 426 (1–2): 205–212.CrossRefGoogle Scholar
  100. 100.
    Kyffin, W.J., W.M. Rainforth, and H. Jones. 2001. Effect of treatment variables on size refinement by phosphide inoculants of primary silicon in hypereutectic Al–Si alloys. Materials Science and Technology 17 (8): 901–905.  https://doi.org/10.1179/026708301101510870.CrossRefGoogle Scholar
  101. 101.
    Robles Hernandez, F.C., M.B. Djurdjevic, W.T. Kierkus, and J.H. Sokolowski. 2005. Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys. Materials Science and Engineering A 396 (1–2): 271–276.  https://doi.org/10.1016/j.msea.2005.01.024.CrossRefGoogle Scholar
  102. 102.
    Hernandez, F.C.R., J.H. Sokolowski, and J.D.C. Rivera. 2007. Micro-Raman analysis of the Si particles present in Al-Si hypereutectic alloys in liquid and semi-solid states. Advanced Engineering Materials 9 (1–2): 46–51.  https://doi.org/10.1002/adem.200600173.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francisco C. Robles Hernandez
    • 1
  • Jose Martin Herrera Ramírez
    • 2
  • Robert Mackay
    • 3
  1. 1.College of TechnologyUniversity of HoustonHoustonUSA
  2. 2.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  3. 3.Metallurgical & Heat TreatmentNemak US/Canada Business UnitWindsorCanada

Personalised recommendations