Advertisement

Thermal Analysis

  • Francisco C. Robles Hernandez
  • Jose Martin Herrera Ramírez
  • Robert Mackay
Chapter

Abstract

In this chapter, an introductory description of thermal analysis including the sample preparation and the ideal heat exchange conditions required for proper testing are given. An algorithm based on a Newtonian behavior is included; other algorithms are compared. A detail analysis of the microstructure is provided in a form of a case study where samples are quenched from different temperatures to freeze the microstructure at specific temperatures. The quenched samples are characterized by means of optical and electron microscopy. The chapter is concluded by linking the characterization and the thermal analysis results.

Keywords

Thermal analysis Quenching Newtonian behavior Heat exchange conditions Scanning electron microscopy Characterization 

References

  1. 1.
    Zamani, M., and S. Seifeddine. 2016. Determination of optimum Sr level for eutectic Si modification in Al-Si cast alloys using thermal analysis and tensile properties. International Journal of Metalcasting 10 (4): 457–465.  https://doi.org/10.1007/s40962-016-0032-8.CrossRefGoogle Scholar
  2. 2.
    Golbahar, B., E. Samuel, A.M. Samuel, H.W. Doty, and F.H. Samuel. 2014. On thermal analysis, macrostructure and microstructure of grain refined Al-Si-Mg cast alloys: Role of Sr addition. International Journal of Cast Metals Research 27 (5): 257–266.  https://doi.org/10.1179/1743133614Y.0000000109.CrossRefGoogle Scholar
  3. 3.
    Hernandez, F.C.R., and J.H. Sokolowski. 2006. Thermal analysis and microscopical characterization of Al-Si hypereutectic alloys. Journal of Alloys and Compounds 419 (1–2): 180–190.  https://doi.org/10.1016/j.jallcom.2005.07.077.CrossRefGoogle Scholar
  4. 4.
    Gloria, D., and J.E. Gruzleski. 1999. A study of the thermal analysis parameters applied to the grain refinement of Al-Si casting alloys. Light Metals 1999: 315–329.Google Scholar
  5. 5.
    Eguskiza, S., A. Niklas, A.I. Fernandez-Calvo, F. Santos, and M. Djurdjevic. 2015. Study of Strontium fading in Al-Si-Mg and Al-Si-Mg-Cu alloy by thermal analysis. International Journal of Metalcasting 9 (3): 43–50.CrossRefGoogle Scholar
  6. 6.
    Aparicio, R., C. Gonzalez-Rivera, M. Ramirez-Argaez, G. Barrera, and G. Trapaga. 2013. Newton thermal analysis of unmodified and strontium modified Al-Si alloys. Kovove Materialy-Metallic Materials 51 (4): 211–220.  https://doi.org/10.4149/km_2013_4_211. Google Scholar
  7. 7.
    Lu, S.Z., and A. Hellawell. 1995. Modification of Al Si alloys - Microstructure, thermal-analysis, and mechanisms. Jom-Journal of the Minerals Metals & Materials Society 47 (2): 38–40.CrossRefGoogle Scholar
  8. 8.
    Nogita, K., and A.K. Dahle. 2003. Effects of boron on eutectic modification of hypoeutectic Al-Si alloys. Scripta Materialia 48 (3): 307–313. Pii S1359-6462(02)00381-0.  https://doi.org/10.1016/S1359-6462(02)00381-0.
  9. 9.
    Nogita, K., S.D. McDonald, and A.K. Dahle. 2004. Eutectic modification of Al-Si alloys with rare earth metals. Materials Transactions 45 (2): 323–326.  https://doi.org/10.2320/matertrans.45.323.CrossRefGoogle Scholar
  10. 10.
    Nogita, K., S.D. McDonald, K. Tsujimoto, K. Yasuda, and A.K. Dahle. 2004. Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys. Journal of Electron Microscopy 53 (4): 361–369.  https://doi.org/10.1093/jmicro/dfh048.CrossRefGoogle Scholar
  11. 11.
    Malekan, M., S. Naghdali, S. Abrishami, and S.H. Mirghaderi. 2016. Effect of cooling rate on the solidification characteristics and dendrite coherency point of ADC12 aluminum die casting alloy using thermal analysis. Journal of Thermal Analysis and Calorimetry 124 (2): 601–609.  https://doi.org/10.1007/s10973-015-5232-6.CrossRefGoogle Scholar
  12. 12.
    Chavez-Zamarripa, R., J.A. Ramos-Salas, J. Talamantes-Silva, S. Valtierra, and R. Colas. 2007. Determination of the dendrite coherency point during solidification by means of thermal diffusivity analysis. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 38A (8): 1875–1879.  https://doi.org/10.1007/s11661-007-9212-8. CrossRefGoogle Scholar
  13. 13.
    Robles Hernandez, F.C., and J.H. Sokolowski. 2006a. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys. Journal of Alloys and Compounds 426 (1–2): 205–212.  https://doi.org/10.1016/j.jallcom.2006.09.039. CrossRefGoogle Scholar
  14. 14.
    Robles Hernandez, F.C., and J.H. Sokolowski. 2006b. Thermal analysis and microscopical characterization of Al-Si hypereutectic alloys. Journal of Alloys and Compounds 419 (1–2): 180–190.  https://doi.org/10.1016/j.jallcom.2005.07.077.CrossRefGoogle Scholar
  15. 15.
    Robles Hernandez, F.C., and J.H. Sokolowski. 2009. Effects and on-line prediction of electromagnetic stirring on microstructure refinement of the 319 Al-Si hypoeutectic alloy. Journal of Alloys and Compounds 480 (2): 416–421.  https://doi.org/10.1016/j.jallcom.2009.02.109.CrossRefGoogle Scholar
  16. 16.
    Robles Hernandez, F.C., J.H. Sokolowski, and J.J. De Cruz Rivera. 2007. Micro-Raman analysis of the Si particles present in Al-Si hypereutectic alloys in liquid and semi-solid states. Advanced Engineering Materials 9 (1–2): 46–51.CrossRefGoogle Scholar
  17. 17.
    Robles-Hernández, F.C. 2004. Improvement in functional characteristics of Al-Si cast components through the utilization of a novel electromagnetic treatment of liquid melts. PhD disertation, Mechanicla Engineering. Windsor: University of Windsor.Google Scholar
  18. 18.
    Robles Hernández, F.C., and J.H. Sokolowski. 2005. Identification of silicon agglomerates in quenched Al-Si hypereutectic alloys from liquid state. Advanced Engineering Materials 7 (11): 1037–1043.CrossRefGoogle Scholar
  19. 19.
    Al-Helal, K., I.C. Stone, and Z. Fan. 2012. Simultaneous primary Si refinement and eutectic modification in hypereutectic Al-Si alloys. Transactions of the Indian Institute of Metals 65 (6): 663–667.  https://doi.org/10.1007/s12666-012-0171-4.CrossRefGoogle Scholar
  20. 20.
    Choi, H., and X.C. Li. 2012. Refinement of primary Si and modification of eutectic Si for enhanced ductility of hypereutectic Al-20Si-4.5Cu alloy with addition of Al2O3 nanoparticles. Journal of Materials Science 47 (7): 3096–3102.  https://doi.org/10.1007/s10853-011-6143-y.CrossRefGoogle Scholar
  21. 21.
    Li, C., X.F. Liu, and Y.Y. Wu. 2008. Refinement and modification performance of Al-P master alloy on primary Mg2Si Al-Mg-Si alloys. Journal of Alloys and Compounds 465 (1–2): 145–150.  https://doi.org/10.1016/j.jallcom.2007.10.111. CrossRefGoogle Scholar
  22. 22.
    Emadi, D., and L.V. Whiting. 2002. Determination of solidification characteristics of Al-Si alloys by thermal analysis. Transactions of the American Foundry Society 110 (1): 285–296.Google Scholar
  23. 23.
    Bäckerud, L., G. Chai, and J. Tamminen. 1990. Solidification characteristics of aluminum alloys: wrought alloys. Vol. 1. 1st ed. Oslo: AFS/Skan Aluminium.Google Scholar
  24. 24.
    Bäckerud, L., E. Król, and J. Tamminen. 1986a. Solidification characteristics of aluminium alloys. Oslo: Skanaluminium.Google Scholar
  25. 25.
    Veldman, N.L.M., A.K. Dahle, D.H. St John, and L. Arnberg. 2001. Dendrite coherency of Al-Si-Cu alloys. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 32 (1): 147–155.  https://doi.org/10.1007/s11661-001-0110-1.CrossRefGoogle Scholar
  26. 26.
    Chai, G.C., L. Backerud, T. Rolland, and L. Arnberg. 1995. Dendrite coherency during equiaxed solidification in binary aluminum-alloys. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 26 (4): 965–970.  https://doi.org/10.1007/Bf02649093.CrossRefGoogle Scholar
  27. 27.
    Dahle, A.K., P.A. Tøndel, C.J. Paradies, and L. Arnberg. 1996. Effect of grain refinement on the fluidity of two commercial Al-Si foundry alloys. Metallurgical and Materials Transactions A 27 (8): 2305–2313.  https://doi.org/10.1007/bf02651885.CrossRefGoogle Scholar
  28. 28.
    Lambrakos, S.G. 2016. Inverse thermal analysis of steel welds using solidification-boundary constraints. Journal of Materials Engineering and Performance 25 (6): 2103–2115.  https://doi.org/10.1007/s11665-016-2084-6.CrossRefGoogle Scholar
  29. 29.
    Mihalache, V. 2016. Thermal analysis of ball-milled Fe-14Cr-3W-0.4Ti-0.25Y(2)O(3) ferritic steel powder evidence for contamination from the air. Journal of Thermal Analysis and Calorimetry 124 (3): 1179–1192.  https://doi.org/10.1007/s10973-016-5304-2.CrossRefGoogle Scholar
  30. 30.
    Ferraz, G., A. Santiago, J.P. Rodrigues, and P. Barata. 2016. Thermal analysis of hollow steel columns exposed to localised fires. Fire Technology 52 (3): 663–681.  https://doi.org/10.1007/s10694-015-0481-2.CrossRefGoogle Scholar
  31. 31.
    Cheon, J., D.V. Kiran, and S.J. Na. 2016. Thermal metallurgical analysis of GMA welded AH36 steel using CFD-FEM framework. Materials & Design 91: 230–241.  https://doi.org/10.1016/j.matdes.2015.11.099.CrossRefGoogle Scholar
  32. 32.
    Campos, M., L. Blanco, and J.M. Torralba. 2006. Thermal analysis of prealloyed Fe-3Cr-0.5Mo sintered steel. Journal of Thermal Analysis and Calorimetry 84 (2): 483–487.  https://doi.org/10.1007/s10973-005-6991-2.CrossRefGoogle Scholar
  33. 33.
    Kosny, J., E. Kossecka, A. Brzezinski, A. Tleoubaev, and D. Yarbrough. 2012. Dynamic thermal performance analysis of fiber insulations containing bio-based phase change materials (PCMs). Energy and Buildings 52: 122–131.  https://doi.org/10.1016/j.enbuild.2012.05.021.CrossRefGoogle Scholar
  34. 34.
    Tlijani, M., et al. 2010. A simultaneous characterization and uncertainty analysis of thermal conductivity and diffusivity of bio-insulate material “Palm date Wood” obtained from a periodic method. IOP Conference Series: Materials Science and Engineering 13 (1): 012015.CrossRefGoogle Scholar
  35. 35.
    Yang, H.S., D.J. Gardner, and H.J. Kim. 2009. Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. Journal of Thermal Analysis and Calorimetry 98 (2): 553–558.  https://doi.org/10.1007/s10973-009-0324-9.CrossRefGoogle Scholar
  36. 36.
    Double, J.S. 1966. Differential thermal analysis of polymers. Transactions and Journal of the Plastics Institute 34 (110): 73.Google Scholar
  37. 37.
    Haly, A.R., and M. Dole. 1964. Differential thermal analysis of polymers undergoing glass transition. Journal of Polymer Science Part B-Polymer Letters 2 (3pb): 285–290.  https://doi.org/10.1002/pol.1964.110020308.
  38. 38.
    Kojima, Y., M. Takahara, T. Matsuoka, and H. Takahashi. 2001. High-pressure differential thermal analysis of polymers. Journal of Applied Polymer Science 80 (7): 1046–1051.  https://doi.org/10.1002/App.1188.CrossRefGoogle Scholar
  39. 39.
    Goff, H.D. 1995. The use of thermal-analysis in the development of a better understanding of frozen food stability. Pure and Applied Chemistry 67 (11): 1801–1808.  https://doi.org/10.1351/pac199567111801.CrossRefGoogle Scholar
  40. 40.
    Kerr, W.L., and D.S. Reid. 1994. The use of stepwise differential scanning calorimetry for thermal-analysis of foods. Thermochimica Acta 246 (2): 299–308.  https://doi.org/10.1016/0040-6031(94)80097-9.CrossRefGoogle Scholar
  41. 41.
    Urzendowski, I.R., and D.G. Pechak. 1992. Characterization of food-packaging materials by microscopic, spectrophotometric, thermal and dynamic mechanical analysis. Food Structure 11 (4): 301–314.Google Scholar
  42. 42.
    Wetton, R.E., and R.D.L. Marsh. 1990. Dynamic mechanical thermal-analysis (DMTA) of food materials. Rheology of Food, Pharmaceutical and Biological Materials with General Rheology: 231–247.Google Scholar
  43. 43.
    Gotz, A., and K.G. Heumann. 1987. Heavy-metal trace determination with a compact thermal ionization quadrupole mass-spectrometer. 2. Analysis of food samples. Fresenius Zeitschrift Fur Analytische Chemie 326 (2): 118–122.  https://doi.org/10.1007/Bf00468493.CrossRefGoogle Scholar
  44. 44.
    Takahashi, K., K. Shirai, K. Wada, and A. Kawamura. 1978. Differential thermal-analysis applied to examining thermal-behavior of starch – Thermal-behavior of high molecular substances in foods. 1. Journal of the Agricultural Chemical Society of Japan 52 (5): 201–206.CrossRefGoogle Scholar
  45. 45.
    Eberth, J.F., J.A. Neal, and F.C. Robles Hernandez. 2012. Evaluation of heat propagation through poultry in a reduced computational-cost model of contact cooking. International Journal of Food Science & Technology 47: 1130–1137.  https://doi.org/10.1111/j.1365-2621.2012.02951.x. CrossRefGoogle Scholar
  46. 46.
    Robles Hernandez, F.C., J.A. Neal, and U.S. Aldea. 2013. Thermal characterization of poultry for the development of a comprehensive device to monitor safe and proper cooking. Journal of Food Process Engineering 36 (2): 160–172.  https://doi.org/10.1111/j.1745-4530.2011.00665.x.CrossRefGoogle Scholar
  47. 47.
    Nafisi, S., R. Ghomashchi, J. Hedjazi, and S.M.A. Boutorabi. 2004. Optimizing the melt treatment of piston alloys using thermal analysis technique. SAE Technical Paper.Google Scholar
  48. 48.
    Djurdjevic, M., H. Jiang, and J. Sokolowski. 2001. On-line prediction of aluminum-silicon eutectic modification level using thermal analysis. Materials Characterization 46 (1): 31–38.  https://doi.org/10.1016/S1044-5803(00)00090-5.
  49. 49.
    Hegde, S., and K.N. Prabhu. 2008. Modification of eutectic silicon in Al-Si alloys. Journal of Materials Science 43 (9): 3009–3027.  https://doi.org/10.1007/s10853-008-2505-5.CrossRefGoogle Scholar
  50. 50.
    Heshmatpour, B. 1997. Modification of silicon in eutectic and hyper-eutectic Al-Si alloys. Light Metals 1997: 801–808.Google Scholar
  51. 51.
    Apelian, D., and G.K. Sigworth, and K.R. Whaler. 1984. Assessment of grain refinement and modification of Al–Si foundry alloys by thermal analysis. AFS Transactions 92 (2): 297–307.Google Scholar
  52. 52.
    Robles Hernandez, F.C. 2004. Improvement in functional characteristics of aluminum-silicon cast components through the utilization of a novel electromagnetic treatment of liquid melts. Ph.D Thesis. (University of Windsor): Windsor.Google Scholar
  53. 53.
    Incropera, F.P. 2007. Fundamentals of heat and mass transfer. 6th ed. Hoboken: Wiley.Google Scholar
  54. 54.
    Incropera, F.P., and D.P. DeWitt. 2002. Software tools and user’s guides to accompany fundamentals of heat and mass transfer, 5th edition & Introduction to heat transfer, 5th edition. New York: Wiley.Google Scholar
  55. 55.
    Hernandez, F.C.R., M.B. Djurdjevic, W.T. Kierkus, and J.H. Sokolowski. 2005. Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 396 (1–2): 271–276.  https://doi.org/10.1016/j.msea.2005.01.024.CrossRefGoogle Scholar
  56. 56.
    Hernandez, F.C.R., J.H. Sokolowski, and J.D.C. Rivera. 2007. Micro-Raman analysis of the Si particles present in Al-Si hypereutectic alloys in liquid and semi-solid states. Advanced Engineering Materials 9 (1–2): 46–51.  https://doi.org/10.1002/adem.200600173.CrossRefGoogle Scholar
  57. 57.
    Hernandez, F.C.R., and J.H. Sokolowski. 2005. Identification of silicon agglomerates in quenched Al-Si hypereutectic alloys from liquid state. Advanced Engineering Materials 7 (11): 1037–1043.CrossRefGoogle Scholar
  58. 58.
    Lu, D.H., Y.H. Jiang, G.S. Guan, R.F. Zhou, Z.H. Li, and R. Zhou. 2007. Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Journal of Materials Processing Technology 189 (1–3): 13–18.  https://doi.org/10.1016/j.jmatprotec.2006.12.008.CrossRefGoogle Scholar
  59. 59.
    Robles Hernández, F.C., and J.H. Sokolowski. 2006c. Thermal analysis and microscopical characterization of Al-Si hypereutectic alloys. Journal of Alloys and Compounds 419 (1–2): 180–190.CrossRefGoogle Scholar
  60. 60.
    Xu, C.L., H.Y. Wang, Y.F. Yang, and Q.C. Jiang. 2007. Effect of Al–P–Ti–TiC–Nd2O3 modifier on the microstructure and mechanical properties of hypereutectic Al–20 wt.%Si alloy. Materials Science and Engineering: A 452–453 (0): 341–346.  https://doi.org/10.1016/j.msea.2006.10.114.CrossRefGoogle Scholar
  61. 61.
    Xu, C.L., H.Y. Wang, Y.F. Yang, H.-Y. Wang, and Q.C. Jiang. 2006. Effect of La2O3 in the Al–P–Ti–TiC–La2O3 modifier on primary silicon in hypereutectic Al–Si alloys. Journal of Alloys and Compounds 421 (1–2): 128–132.  https://doi.org/10.1016/j.jallcom.2005.11.034.CrossRefGoogle Scholar
  62. 62.
    Wang, W.M., X.F. Bian, J.Y. Qin, and S.I. Syliusarenko. 2000. The atomic-structure changes in Al-16 pct Si alloy above the liquidus. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 31 (9): 2163–2168.  https://doi.org/10.1007/s11661-000-0134-y.CrossRefGoogle Scholar
  63. 63.
    Sadigh, B., M. Dzugutov, and S.R. Elliott. 1999. Vacancy ordering and medium-range structure in a simple monatomic liquid. Physical Review B 59 (1): 1–4.  https://doi.org/10.1103/Physrevb.59.1.CrossRefGoogle Scholar
  64. 64.
    Xiufang, B., W. Weimin, and Q. Jingyu. 2001. Liquid structure of Al–12.5% Si alloy modified by antimony. Materials Characterization 46 (1): 25–29.  https://doi.org/10.1016/S1044-5803(00)00089-9.
  65. 65.
    Wang, W., X. Bian, J. Qin, and T.G. Fan. 2000. Study on atomic density changes in the liquid Al-Si alloys by X-ray diffraction method. Journal of Materials Science Letters 19 (17): 1583–1585.  https://doi.org/10.1023/a:1006741626728.CrossRefGoogle Scholar
  66. 66.
    Bian, X., and W. Wang. 2000. Thermal-rate treatment and structure transformation of Al–13 wt.% Si alloy melt. Materials Letters 44 (1): 54–58.  https://doi.org/10.1016/S0167-577X(00)00011-2.
  67. 67.
    Inui, M., S.I. Takeda, Y. Shirakawa, S. Tamaki, Y. Waseda, and Y. Yamaguchi. 1991. Structural study of molten silver halides by neutron diffraction. Journal of the Physical Society of Japan 60 (9): 3025–3031.Google Scholar
  68. 68.
    Ye, H. 2003. An overview of the development of Al-Si-alloy based material for engine applications. Journal of Materials Engineering and Performance 12 (3): 288–297.  https://doi.org/10.1361/105994903770343132.CrossRefGoogle Scholar
  69. 69.
    Vijeesh, V., and K. Narayan Prabhu. 2014. Review of microstructure evolution in hypereutectic Al–Si alloys and its effect on wear properties. Transactions of the Indian Institute of Metals 67 (1): 1–18.  https://doi.org/10.1007/s12666-013-0327-x.
  70. 70.
    Kirin, A., A. Tonejc, and A. Bonefačić. 1969. Change in the lattice parameter of aluminum under the influence of rapid quenching from the liquid state. Scripta Metallurgica 3 (12): 943–946.  https://doi.org/10.1016/0036-9748(69)90247-6.
  71. 71.
    Larson, B.C. 1974. High-precision measurements of lattice parameter changes in neutron-irradiated copper. Journal of Applied Physics 45 (2): 514–518.  https://doi.org/10.1063/1.1663274.
  72. 72.
    Bandyopadhyay, J., and K.P. Gupta. 1977. Low temperature lattice parameter of nickel and some nickel-cobalt alloys and Grüneisen parameter of nickel. Cryogenics 17 (6): 345–347.  https://doi.org/10.1016/0011-2275(77)90130-8.
  73. 73.
    Windisch, D., and P. Becker. 1990. Silicon lattice-parameters as an absolute scale of length for high-precision measurements of fundamental constants. Physica Status Solidi A-Applied Research 118 (2): 379–388.  https://doi.org/10.1002/pssa.2211180205.CrossRefGoogle Scholar
  74. 74.
    Glicksman, M.E., and SpringerLink (Online service). 2011. Principles of solidification an introduction to modern casting and crystal growth concepts. New York: Springer Science+Business Media/LLC.  https://doi.org/10.1007/978-1-4419-7344-3.Google Scholar
  75. 75.
    Stefanescu D.M., and SpringerLink (Online service). 2009. Science and engineering of casting solidification. 2nd ed. Boston: Springer-Verlag US.  https://doi.org/10.1007/b135947.Google Scholar
  76. 76.
    Djurdjevic, M.B., W. Kasprzak, C.A. Kierkus, W.T. Kierkus, and J.H. Sokolowski. 2001. Quantification of Cu enriched phases in synthetic 3XX aluminum alloys using the thermal analysis technique. AFS Transactions 16: 1–12.Google Scholar
  77. 77.
    Djurdjevic, M., J. Sokolowski, and T. Stockwell. 1998. Control of the aluminum-silicon alloy solidification process using thermal analysis. Metallurgy 4: 237–248.Google Scholar
  78. 78.
    MacKay, R.I., M.B. Djurdjevic, H. Jiang, J.H. Sokolowski, and W.J. Evans. 2000. Determination of eutectic Si particle modification via a new thermal analysis interpretive method in 319 alloy. In Transactions of the American Foundry Society and the one hundred fourth annual castings congress, 511–520.Google Scholar
  79. 79.
    Samuel, A.M., P. Ouellet, F.H. Samuel, and H.W. Doty. 1998. Microstructural interpretation of thermal analysis of commercial 319 Al alloy with Mg and Sr additions. Transactions of the American Foundrymen’s Society 105 (105): 951–962.Google Scholar
  80. 80.
    Mahfoud, M., A.K.P. Rao, and D. Emadi. 2010. The role of thermal analysis in detecting impurity levels during aluminum recycling. Journal of Thermal Analysis and Calorimetry 100 (3): 847–851.  https://doi.org/10.1007/s10973-010-0742-8.CrossRefGoogle Scholar
  81. 81.
    Arnberg, L., L. Bäckerud, and G. Chai. 1996. In Solidification characteristics of aluminum alloys: Dendrite coherency, ed. S.P. Thomas. Oslo: American Foundrymen’s Society.Google Scholar
  82. 82.
    Bäckerud, L., E. Król, and J. Tamminen. 1986b. Solidification characteristics of aluminum alloys: Wrought alloys. Oslo: Skanaluminium.Google Scholar
  83. 83.
    Backerud, L. 1983. How does a good grain refiner work. Light Metal Age 41 (9-10):6–10.Google Scholar
  84. 84.
    Backerud, L., P. Gustafson, and M. Johnsson. 1991. Grain refining mechanisms in aluminium as a result of additions of titanium and boron, Part I. Aluminum 67 (9): 910–915.Google Scholar
  85. 85.
    Chen, C., Z.-X. Liu, B. Ren, M.-X. Wang, Y.-G. Weng, and Z.-Y. Liu. 2007. Influences of complex modification of P and RE on microstructure and mechanical properties of hypereutectic Al-20Si alloy. Transactions of Nonferrous Metals Society of China 17 (2): 301–306.  https://doi.org/10.1016/S1003-6326(07)60089-2.
  86. 86.
    Hume-Rothery, W. 1952. Atomic theory for students of metallurgy. Lincoln: Institute of Metals.Google Scholar
  87. 87.
    Huggins, M.L. 1936. The structure of metals and alloys (Hume-Rothery, William). Journal of Chemical Education 13 (7): 350.  https://doi.org/10.1021/ed013p350.2.CrossRefGoogle Scholar
  88. 88.
    Arnberg, L., G. Chai, and L. Backerud. 1993. Determination of dendritic coherency in solidifying melts by rheological measurements. Materials Science and Engineering: A 173 (1):101–103.  https://doi.org/10.1016/0921-5093(93)90195-K.
  89. 89.
    Chai, G., L. BÄckerud, T. RØlland, and L. Arnberg. 1995. Dendrite coherency during equiaxed solidification in binary aluminum alloys. Metallurgical and Materials Transactions A 26 (4): 965–970.  https://doi.org/10.1007/bf02649093.CrossRefGoogle Scholar
  90. 90.
    Dahle, A.K., and L. Arnberg. 1996. The rheological properties of solidifying aluminum foundry alloys – Overview. Jom-Journal of the Minerals Metals & Materials Society 48 (3): 34–37.CrossRefGoogle Scholar
  91. 91.
    Gupta, A.K., D.J. Lloyd, and S.A. Court. 2001. Precipitation hardening in Al-Mg-Si alloys with and without excess Si. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 316 (1–2): 11–17.  https://doi.org/10.1016/S0921-5093(01)01247-3.CrossRefGoogle Scholar
  92. 92.
    Wang, X., S. Esmaeili, and D.J. Lloyd. 2006. The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 37A (9): 2691–2699.  https://doi.org/10.1007/Bf02586103.CrossRefGoogle Scholar
  93. 93.
    Edwards, G.A., K. Stiller, G.L. Dunlop, and M.J. Couper. 1998. The precipitation sequence in Al-Mg-Si alloys. Acta Materialia 46 (11): 3893–3904.  https://doi.org/10.1016/S1359-6454(98)00059-7.CrossRefGoogle Scholar
  94. 94.
    Tavitas-Medrano, F.J., A.M.A. Mohamed, J.E. Gruzleski, F.H. Samuel, and H.W. Doty. 2010. Precipitation-hardening in cast AL-Si-Cu-Mg alloys. Journal of Materials Science 45 (3): 641–651.  https://doi.org/10.1007/s10853-009-3978-6.CrossRefGoogle Scholar
  95. 95.
    Ibrahim, M.F., A.M. Samuel, H.W. Doty, and F.H. Samuel. 2017. Effect of aging conditions on precipitation hardening in Al–Si–Mg and Al–Si–Cu–Mg alloys. International Journal of Metalcasting 11 (2): 274–286.  https://doi.org/10.1007/s40962-016-0057-z.CrossRefGoogle Scholar
  96. 96.
    Mohamed, A.M.A., and F.H. Samuel. 2012. Chapter 04: A review on the heat treatment of Al-Si-Cu/Mg casting alloys. In Heat treatment – Conventional and novel applications, ed. F. Czerwinski. Rijeka: InTech.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francisco C. Robles Hernandez
    • 1
  • Jose Martin Herrera Ramírez
    • 2
  • Robert Mackay
    • 3
  1. 1.College of TechnologyUniversity of HoustonHoustonUSA
  2. 2.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  3. 3.Metallurgical & Heat TreatmentNemak US/Canada Business UnitWindsorCanada

Personalised recommendations