Comparative Aspects of CgA-Derived Peptides in Cardiac Homeostasis

  • Alfonsina GattusoEmail author
  • Sandra Imbrogno
  • Rosa Mazza
Part of the UNIPA Springer Series book series (USS)


This chapter is an overview of the cardiotropic actions of the Chromogranin A-derived peptides, vasostatins and catestatin on the isolated and perfused eel (Anguilla anguilla) and frog (Rana esculenta) hearts, used as paradigms of fish and amphibian hearts. Our studies highlight important cardiotropic features of the two peptides both at basal (negative inotropism) and stimulated (anti-adrenergic effect: eel and frog; anti-endothelin action: frog) conditions. In addition, catestatin positively modulates the Frank-Starling response both in eel and frog hearts. Overall, the comparison of vasostatins and catestatin-mediated role in cardiac homeostasis of fish and amphibians illustrates aspects of uniformity and species specific differences in the mechanism of action of the peptides.


Catestatin Vasostatins Inotropism Isoproterenol Endothelin-1 Frank-Starling response 



Protein kinase B


Atrial natriuretic peptide


bovine CgA4–16


bovine CgA47–66




Chromogranin A


CgA1–40 without an intact disulfide bridge


CgA1–40 with an intact disulfide bridge




Endocardial endothelium


Endothelial nitric oxide synthase




Endothelin-1 A subtype receptor


Endothelin-1 B subtype receptor


frog CgA4–16


frog CgA47–66




Nitric Oxide


Nitric Oxide Synthase


Phosphatidyl 3-kinase


Protein Kinase G




Pertussis toxin


Sarcoplasmic Reticulum Ca2+−ATPase


Vasostatin 1 (CgA1–76)


Vasostatin 2 (CgA1–113)






  1. Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept 41:9–18CrossRefPubMedGoogle Scholar
  2. Aardal S, Helle KB, Elsayed S, Reed RK, Serck-Hanssen G (1993) Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments. J Neuroendocrinol 5:405–412CrossRefPubMedGoogle Scholar
  3. Ai T, Horie M, Obayashi K, Sasayama S (1998) Accentuated antagonism by angiotensin II on guinea-pig cardiac L-type Ca-currents enhanced by b-adrenergic stimulation. Eur J Phys 436:168–174CrossRefGoogle Scholar
  4. Angelone T, Quintieri AM, Brar BK, Limchaiyawat PT, Tota B, Mahata SK, Cerra MC (2008) The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinol 149:4780–4793CrossRefGoogle Scholar
  5. Angelone T, Quintieri AM, Pasqua T, Filice E, Cantafio P, Scavello F, Rocca C, Mahata SK, Gattuso A, Cerra MC (2015) The NO stimulator, Catestatin, improves the Frank-Starling response in normotensive and hypertensive rat hearts. Nitric Oxide 50:10–19CrossRefPubMedGoogle Scholar
  6. Banks P, Helle K (1965) The release of protein from the stimulated adrenal medulla. Biochem J 97:40C–41CCrossRefPubMedPubMedCentralGoogle Scholar
  7. Barkatullah SC, Curry WJ, Johnston CF, Hutton JC, Buchanan KD (1997) Ontogenetic expression of chromogranin A and its derived peptides, WE-14 and pancreastatin, in the rat neuroendocrine system. Histochem Cell Biol 107:251–257CrossRefPubMedGoogle Scholar
  8. Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR (2011) The extended granin family: structure, function, and biomedical implications. Endocr Rev 32:755–797CrossRefPubMedPubMedCentralGoogle Scholar
  9. Biswas N, Curello E, O’Connor DT, Mahata SK (2010) Chromogranin/secretogranin proteins in murine heart: myocardial production of chromogranin A fragment catestatin (Chga(364–384)). Cell Tissue Res 342:353–361CrossRefPubMedPubMedCentralGoogle Scholar
  10. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94CrossRefPubMedGoogle Scholar
  11. Brekke JF, Osol GJ, Helle KB (2002) N-terminal chromogranin derived peptides as dilators of bovine coronary resistance arteries. Regul Pept 105:93–100CrossRefPubMedGoogle Scholar
  12. Cappello S, Angelone T, Tota B, Pagliaro P, Penna C, Rastaldo R, Corti A, Losano G, Cerra MC (2007) Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signalling mechanism. Am J Physiol Heart Circ Physiol 293:H719–H727CrossRefPubMedGoogle Scholar
  13. Cerra MC, De Iuri L, Angelone T, Corti A, Tota B (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol 101:43–52CrossRefPubMedGoogle Scholar
  14. Corti A, Mannarino C, Mazza R, Colombo B, Longhi R, Tota B (2002) Vasostatin exert negative inotropism in the working heart of the frog. Ann N Y Acad Sci 971:362–365CrossRefPubMedGoogle Scholar
  15. Corti A, Mannarino C, Mazza R, Angelone T, Longhi R, Tota B (2004) Chromogranin A N-terminal fragments vasostatins-1 and the synthetic CgA 7–57 peptide act as cardiostatins on the isolated working frog heart. Gen Comp Endocrinol 136:217–224CrossRefPubMedGoogle Scholar
  16. Deftos LJ, Björnsson BT, Burton DW, O’Connor DT, Copp DH (1987) Chromogranin A is present in and released by fish endocrine tissue. Life Sci 40:2133–2136CrossRefPubMedGoogle Scholar
  17. Fung MM, Salem RM, Mehtani P, Thomas B, Lu CF, Perez B, Rao F, Stridsberg M, Ziegler MG, Mahata SK, O’Connor DT (2010) Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens 32:278–287CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garofalo F, Parisella ML, Amelio D, Tota B, Imbrogno S (2009) Phospholamban S-nitrosylation modulates Starling response in fish heart. Proc Biol Sci 276:4043–4052CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gattuso A, Mazza R, Pellegrino D, Tota B (1999) Endocardial endothelium mediates luminal ACh-NO signaling in isolated frog heart. Am J Phys 276:H633–H641Google Scholar
  20. Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, Metz-Boutigue MH, Goumon Y (2006) Characterization of natural vasostatin containing peptides in rat heart. FEBS J 273:3311–3321CrossRefPubMedGoogle Scholar
  21. Helle KB, Marley PD, Angeletti RH, Aunis D, Galindo E, Small DH, Livett BG (1993) Chromogranin A: secretion of processed products from the stimulated retrogradely perfused bovine adrenal gland. J Neuroendocrinol 5:413–420CrossRefPubMedGoogle Scholar
  22. Helle KB, Metz-Boutigue MH, Aunis D (2001) Chromogranin A as a calcium-binding precursor for a multitude of regulatory peptides for immune, endocrine and metabolic system. Curr Med Chem 1:119–140Google Scholar
  23. Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886CrossRefPubMedGoogle Scholar
  24. Herrero CJ, Alés E, Pintado AJ, López MG, García-Palomero E, Mahata SK, O’Connor DT, García AG, Montiel C (2002) Modulatory mechanism of the endogenous peptide catestatin on neuronal nicotinic acetylcholine receptors and exocytosis. J Neurosci 22:377–388PubMedGoogle Scholar
  25. Iacangelo A, Affolter HU, Eiden LE, Herbert E, Grimes M (1986) Bovine chromogranin A sequence and distribution of its messenger RNA in endocrine tissues. Nature 323:82–86CrossRefPubMedGoogle Scholar
  26. Imbrogno S, De Iuri L, Mazza R, Tota B (2001) Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla. J Exp Biol 204:1719–1727PubMedGoogle Scholar
  27. Imbrogno S, Angelone T, Corti A, Adamo C, Helle KB, Tota B (2004) Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action. Gen Comp Endocrinol 139:20–28CrossRefPubMedGoogle Scholar
  28. Imbrogno S, Garofalo F, Cerra MC, Mahata SK, Tota B (2010) The catecholamine release-inhibitory peptide catestatin (chromogranin A344–363) modulates myocardial function in fish. J Exp Biol 213:3636–3643CrossRefPubMedGoogle Scholar
  29. Jean-François F, Castano S, Desbat B, Odaert B, Roux M, Metz-Boutigue MH, Dufourc EJ (2008) Aggregation of cateslytin beta-sheets on negatively charged lipids promotes rigid membrane domains. A new mode of action for antimicrobial peptides? Biochemistry 47:6394–6402CrossRefPubMedGoogle Scholar
  30. Koeslag JH, Saunders PT, Wessels JA (1999) The chromogranins and the counterregulatory hormones: do they make homeostatic sense? J Physiol 517:643–649CrossRefPubMedPubMedCentralGoogle Scholar
  31. Koshimizu H, Cawley NX, Yergy AL, Loh YP (2011) Role of pGlu-Serpinin, a novel chromogranin A-derived peptide in inhibition of cell death. J Mol Neurosci 45:294–303CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kraszewski S, Drabik D, Langner M, Ramseyer C, Kembubpha S, Yasothornsrikul S (2015) A molecular dynamics study of catestatin docked on nicotinic acetylcholine receptors to identify amino acids potentially involved in the binding of chromogranin A fragments. Phys Chem Chem Phys 17:17454–17460CrossRefPubMedGoogle Scholar
  33. Krüger PG, Mahata SK, Helle KB (2003) Catestatin (CgA344–364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. Regul Pept 114:29–35CrossRefPubMedGoogle Scholar
  34. Krylova MI (2007) Chromogranin A: immunocytochemical localization in secretory granules of frog atrial cardiomyocytes. Tsitologiia 49:538–543PubMedGoogle Scholar
  35. Lugardon K, Chasserot-Golaz S, Kieffer AE, Maget-Dana R, Nullans G, Kieffer B, Aunis D, Metz-Boutigue MH (2001) Structural and biological characterizationof chromofungin, the antifungal chromogranin A-(47 – 66)-derived peptide. J Biol Chem 276:35875–35882CrossRefPubMedGoogle Scholar
  36. Lugardon K, Chasserot-Golaz S, Kieffer AE, Maget-Dana R, Nullans G, Kieffer B, Aunis D, Metz-Boutigue MH (2002) Structural and biological characterization of chromofungin, the antifungal chromogranin A (47–66)-derived peptide. Ann N Y Acad Sci 971:359–361CrossRefPubMedGoogle Scholar
  37. Maget-Dana R, Metz-Boutigue MH, Helle KB (2002) The N-terminal domain of chromogranin A (CgA1–40) interacts with monolayers of membrane lipids of fungal and mammalian compositions. Ann N Y Acad Sci 971:352–354CrossRefPubMedGoogle Scholar
  38. Mahapatra NR, O’Connor DT, Vaingankar SM, Sinha Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N et al (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Investig 100:1623–1633CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mahata SK, Mahata M, Parmer RJ, O’Connor DT (1999) Desensitization of catecholamine release: the novel catecholamine release-inhibitory peptide catestatin (chromogranin A344–364) acts at the receptor to prevent nicotinic cholinergic tolerance. J Biol Chem 274:2920–2928CrossRefPubMedGoogle Scholar
  41. Mahata SK, Mahapatra NR, Mahata M, Wang TC, Kennedy BP, Ziegler MG, O’Connor DT (2003) Catecholamine secretory vesicle stimulustranscription coupling in vivo. Demonstration by a novel transgenic promoter/photoprotein reporter and inhibition of secretion and transcription by the chromogranin A fragment catestatin. J Biol Chem 278:32058–32067CrossRefPubMedGoogle Scholar
  42. Mahata SK, Mahata M, Wen G, Wong WB, Mahapatra NR, Hamilton BA, O’Connor DT (2004) The catecholamine release-inhibitory ‘catestatin’ fragment of chromogranin a: naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses. Mol Pharmacol 66:1180–1191CrossRefPubMedGoogle Scholar
  43. Mazza R, Mannarino C, Imbrogno S, Barbieri SF, Adamo C, Angelone T, Corti A, Tota B (2007) Crucial role of cytoskeleton reorganization in the negative inotropic effect of chromogranin A-derived peptides in eel and frog hearts. Regul Pept 138:145–151CrossRefPubMedGoogle Scholar
  44. Mazza R, Gattuso A, Mannarino C, Brar BK, Barbieri SF, Tota B, Mahata SK. Catestatin (chromogranin A344–364 is a novel cardiosuppressive agent, inhibition of isoproterenol and endothelin signaling in the frog heart. Am J Physiol Heart Circ Physiol. 2008;295:H113–H122.Google Scholar
  45. Mazza R, Angelone T, Pasqua T, Gattuso A (2010) Physiological evidence for 3-adrenoceptor in frog (Rana esculenta) heart. Gen Comp Endocrinol 169:151–157CrossRefPubMedGoogle Scholar
  46. Mazza R, Pasqua T, Gattuso A (2012) Cardiac heterometric response: the interplay between Catestatin and nitric oxide deciphered by the frog heart. Nitric Oxide 27:40–49CrossRefPubMedGoogle Scholar
  47. Mazza R, Pasqua T, Cerra MC, Angelone T, Gattuso A (2013) Akt/eNOS signaling and PLN S-sulfhydration are involved in H2Sdependent cardiac effects in frog and rat. Am J Physiol Regul Integr Comp Physiol 305:R443–R451CrossRefPubMedGoogle Scholar
  48. Mazza R, Tota B, Gattuso A (2015) Cardio-vascular activity of catestatin: interlocking the puzzle pieces. Curr Med Chem 22:292–230CrossRefPubMedGoogle Scholar
  49. Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, Aunis D (1993) Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem 217:247–257CrossRefPubMedGoogle Scholar
  50. O’Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ (2002) Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens 20:1335–1345CrossRefPubMedGoogle Scholar
  51. Penna C, Tullio F, Perrelli MG, Mancardi D, Pagliaro P (2012) Cardioprotection against ischemia/reperfusion injury and chromogranin A-derived peptides. Curr Med Chem 19:4074–4085CrossRefPubMedGoogle Scholar
  52. Peterson JB, Nelson DL, Ling E, Angeletti RH (1987) Chromogranin A-like proteins in the secretory granules of a protozoan, paramecium tetraurelia. J Biol Chem 262:17264–17267PubMedGoogle Scholar
  53. Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B, Cerra MC, Bellocci F, Crea F, Maseri A (2007) Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J 28:1117–1127CrossRefPubMedGoogle Scholar
  54. Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96:1320–1329CrossRefPubMedGoogle Scholar
  55. Rao F, Wen G, Gayen JR, Das M, Vaingankar SM, Rana BK, Mahata M, Kennedy BP, Salem RM, Stridsberg M, Abel K, Smith DW, Eskin E, Schork NJ, Hamilton BA, Ziegler MG, Mahata SK, O’Connor DT (2007) Catecholamine release-inhibitory peptide catestatin (chromograninA 352– 372): naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension. Circulation 115:2271–2281CrossRefPubMedGoogle Scholar
  56. Reinecke M, Höög A, Ostenson CG, Efendic S, Grimelius L, Falkmer S (1991) Phylogenetic aspects of pancreastatin- and chromogranin-like immunoreactive cells in the gastro-entero-pancreatic neuroendocrine system of vertebrates. Gen Comp Endocrinol 83:167–182CrossRefPubMedGoogle Scholar
  57. Seternes T, Oynebraten I, Sorensen K, Smedsrod B (2001) Specific endocytosis and catabolism in the scavenger endothelial cells of cod (Gadus morhua L.) generate high-energy metabolites. J Exp Biol 204:1537–1546PubMedGoogle Scholar
  58. Shiels HA, White E (2008) The Frank–Starling mechanism in vertebrate cardiac myocytes. J Exp Biol 211:2005–2011CrossRefPubMedGoogle Scholar
  59. Smart D, Johnston CF, Curry WJ, Shaw C, Halton DW, Fairweather I, Buchanan KD (1992) Immunoreactivity to two specific regions of chromogranin A in the nervous system of Ascaris suum: an immunocytochemical study. Parasitol Res 78:329–335CrossRefPubMedGoogle Scholar
  60. Steiner HJ, Weiler R, Ludescher C, Schmid KW, Winkler H (1990) Chromogranins A and B are co-localized with atrial natriuretic peptides in secretory granules of rat heart. J Histochem Cytochem 38:845–850CrossRefPubMedGoogle Scholar
  61. Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1996) Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173–194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271:28533–28540CrossRefPubMedGoogle Scholar
  62. Sys SU, Pellegrino D, Mazza R, Gattuso A, Andries LJ, Tota B (1997) Endocardial endothelium in the avascular heart of the frog: morphology and role of nitric oxide. J Exp Biol 200:3109–3118PubMedGoogle Scholar
  63. Tatemoto K, Efendić S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324:476–478CrossRefPubMedGoogle Scholar
  64. Tota B, Mazza R, Angelone T, Nullans G, Metz-Boutigue MH, Aunis D, Helle KB (2003) Peptides from the N-terminal domain of chromogranin A (vasostatins) exert negative inotropic effects in the isolated frog heart. Regul Pept 114:91–99CrossRefPubMedGoogle Scholar
  65. Tota B, Imbrogno S, Mannarino C, Mazza R (2004) Vasostatins and negative inotropy in vertebrate hearts. Curr Med Chem Immun Endoc Metab Agents 4:195–201CrossRefGoogle Scholar
  66. Tota B, Quintieri AM, Di Felice V, Cerra MC (2007) New biological aspects of chromogranin A-derived peptides: focus on vasostatins. Comp Biochem Physiol A Physiol 147:11–18CrossRefGoogle Scholar
  67. Trandaburu T, Ali SS, Trandaburu I (1999) Granin proteins (chromogranin A and secretogranin II C23–3 and C26–3) in the intestine of reptiles. Ann Anat 81:261–268CrossRefGoogle Scholar
  68. Vesely DL (2006) Which of the cardiac natriuretic peptides is most effective for the treatment of congestive heart failure, renal failure and cancer? Clin Exp Pharmacol Physiol 33:169–176CrossRefPubMedGoogle Scholar
  69. Vesely DL, Douglass MA, Dietz JR, Gower WR Jr, McCormick MT, Rodriguez-Paz G, Schocken DD (1994) Three peptides from the atrial natriuretic factor prohormone amino terminus lower blood pressure and produce diuresis, natriuresis, and/or kaliuresis in humans. Circulation 90:1129–1140CrossRefPubMedGoogle Scholar
  70. Weiergraber M, Pereverzev A, Vajna R, Henry M, Schramm M, Nastainczyk W, Grabsch H, Schneider T (2000) Immunodetection of alpha1E voltagegated Ca(2+) channel in chromogranin-positive muscle cells of rat heart, and in distal tubules of human kidney. J Histochem Cytochem 48:807–819CrossRefPubMedGoogle Scholar
  71. Wen G, Mahata SK, Cadman P, Mahata M, Ghosh S, Mahapatra NR, Rao F, Stridsberg M, Smith DW, Mahboubi P, Schork NJ, O’Connor DT, Hamilton BA (2004) Both rare and common polymorphisms contribute functional variation at CHGA, a regulator of catecholamine physiology. Am J Hum Genet 74:197–207CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alfonsina Gattuso
    • 1
    Email author
  • Sandra Imbrogno
    • 1
  • Rosa Mazza
    • 1
  1. 1.Department of Biology, Ecology, and Earth ScienceUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations