Advertisement

Chromogranins and the Quantum Release of Catecholamines

  • Leandro Castañeyra
  • Michelle Juan-Bandini
  • Natalia Domínguez
  • José David Machado
  • Ricardo BorgesEmail author
Chapter
Part of the UNIPA Springer Series book series (USS)

Abstract

Chromogranins (Cgs) are the most abundant intravesicular proteins of chromaffin granules. Using Cgs knockout mice, we found that the lack of chromogranin A (CgA), chromogranin B (CgB) or both drastically reduce the vesicular content of catecholamines (CA), impair its accumulation in granules and largely affect the kinetics of exocytosis. Conversely, the overexpression of CgA induces the genesis of vesicles, increases their quantal content and even transforms non-secretory in cells capable to secrete substances. We conclude that Cgs contribute to a highly efficient system that directly mediates monoamine accumulation and regulates the exocytotic process.

Keywords

Amperometry Intracellular electrochemistry HEK293 L-DOPA Patch-amperometry PC12 

Abbreviations

CA

Catecholamines

CgA

Chromogranin A

CgA&B

Chromogranins A and B

CgB

Chromogranin B

Cgs

Chromogranins

KO

Knockout

LDCV

Large dense core vesicle

SgII

Secretogranin II

VMAT

Vesicular mono-amine transporter

VNUT

Vesicular nucleotide transporter

WT

Wild type animals

Notes

Acknowledgments

LC is the recipient of a fellowship from the Fundación CajaCanarias. This work is partially funded by the grant BFU2013-45253-P from the MINECO (Spain) to RB and JDM.

References

  1. Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389:509–512CrossRefPubMedGoogle Scholar
  2. Beuret N, Stettler H, Renold A, Rutishauser J, Spiess M (2004) Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. J Biol Chem 279:20242–20249CrossRefPubMedGoogle Scholar
  3. Blaschko H, Comline RS, Schneider FH, Silver M, Smith AD (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59CrossRefPubMedGoogle Scholar
  4. Borges R (2013) The ATP or the natural history of neurotransmission. Purinergic Signal 9:5–6CrossRefPubMedGoogle Scholar
  5. Camacho M, Machado JD, Montesinos MS, Criado M, Borges R (2006) Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells. J Neurochem 96:324–334CrossRefPubMedGoogle Scholar
  6. Camacho M, Machado JD, Alvarez J, Borges R (2008) Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells. J Biol Chem 283:22383–22389CrossRefPubMedGoogle Scholar
  7. Colliver TL, Pyott SJ, Achalabun M, Ewing AG (2000) VMAT-mediated changes in quantal size and vesicular volume. J Neurosci 20:5276–5282PubMedGoogle Scholar
  8. Courel M, Rodemer C, Nguyen ST, Pance A, Jackson AP, O'Connor DT et al (2006) Secretory granule biogenesis in sympathoadrenal cells: identification of a granulogenic determinant in the secretory prohormone chromogranin A. J Biol Chem 281:38038–38051CrossRefPubMedGoogle Scholar
  9. Crivellato E, Nico B, Ribatti D (2008) The chromaffin vesicle: advances in understanding the composition of a versatile, multifunctional secretory organelle. Anat Rec 291:1587–1602CrossRefGoogle Scholar
  10. Day R, Gorr SU (2003) Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor? Trends Endocrinol Metab 14:10–13CrossRefPubMedGoogle Scholar
  11. Diaz-Vera J, Morales YG, Hernandez-Fernaud JR, Camacho M, Montesinos MS, Calegari F et al (2010) Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 30:950–957CrossRefPubMedGoogle Scholar
  12. Diaz-Vera J, Camacho M, Machado JD, Dominguez N, Montesinos MS, Hernandez-Fernaud JR et al (2012) Chromogranins A and B are key proteins in amine accumulation, but the catecholamine secretory pathway is conserved without them. FASEB J 26:430–438CrossRefPubMedGoogle Scholar
  13. Dominguez N, Estevez-Herrera J, Borges R, Machado JD (2014) The interaction between chromogranin A and catecholamines governs exocytosis. FASEB J 28:4657–4667CrossRefPubMedGoogle Scholar
  14. Ehrhart M, Grube D, Bader MF, Aunis D, Gratzl M (1986) Chromogranin A in the pancreatic islet: cellular and subcellular distribution. J Histochem Cytochem 34:1673–1682CrossRefPubMedGoogle Scholar
  15. Estevez-Herrera J, Dominguez N, Pardo MR, Gonzalez-Santana A, Westhead EW, Borges R et al (2016a) ATP: the crucial component of secretory vesicles. Proc Natl Acad Sci U S A 113:E4098–E4106CrossRefPubMedPubMedCentralGoogle Scholar
  16. Estevez-Herrera J, Gonzalez-Santana A, Baz-Davila R, Machado JD, Borges R (2016b) The intravesicular cocktail and its role in the regulation of exocytosis. J Neurochem 137:897–903CrossRefPubMedGoogle Scholar
  17. Glombik MM, Kromer A, Salm T, Huttner WB, Gerdes HH (1999) The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 18:1059–1070CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gong LW, Hafez I, Alvarez de Toledo G, Lindau M (2003) Secretory vesicles membrane area is regulated in tandem with quantal size in chromaffin cells. J Neurosci 23:7917–7921PubMedGoogle Scholar
  19. Helle KB (2004) The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 79:769–794CrossRefPubMedGoogle Scholar
  20. Helle KB, Reed RK, Pihl KE, Serck-Hanssen G (1985) Osmotic properties of the chromogranins and relation to osmotic pressure in catecholamine storage granules. Acta Physiol Scand 123:21–33CrossRefPubMedGoogle Scholar
  21. Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886CrossRefPubMedGoogle Scholar
  22. Hendy GN, Li T, Girard M, Feldstein RC, Mulay S, Desjardins R et al (2006) Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Mol Endocrinol 20:1935–1947CrossRefPubMedGoogle Scholar
  23. Huh YH, Jeon SH, Yoo SH (2003) Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 278:40581–40589CrossRefPubMedGoogle Scholar
  24. Huttner WB, Gerdes HH, Rosa P (1991) The granin (chromogranin/secretogranin) family. Trends Biochem Sci 16:27–30CrossRefPubMedGoogle Scholar
  25. Iacangelo AL, Eiden LE (1995) Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. Regul Pept 58:65–88CrossRefPubMedGoogle Scholar
  26. Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106:499–509CrossRefPubMedGoogle Scholar
  27. Kopell WN, Westhead EW (1982) Osmotic pressures of solutions of ATP and catecholamines relating to storage in chromaffin granules. J Biol Chem 257:5707–5710PubMedGoogle Scholar
  28. Koshimizu H, Kim T, Cawley NX, Loh YP (2010) Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis. Regul Pept 160:153–159CrossRefPubMedGoogle Scholar
  29. Kromer A, Glombik MM, Huttner WB, Gerdes HH (1998) Essential role of the disulfide-bonded loop of chromogranin B for sorting to secretory granules is revealed by expression of a deletion mutant in the absence of endogenous granin synthesis. J Cell Biol 140:1331–1346CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee JC, Hook V (2009) Proteolytic fragments of chromogranins A and B represent major soluble components of chromaffin granules, illustrated by two-dimensional proteomics with NH2-terminal edman peptide sequencing and MALDI-TOF MS. Biochemistry 48:5254–5262CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mahapatra NR, O'Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S et al (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952CrossRefPubMedPubMedCentralGoogle Scholar
  32. Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y (2008) Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 192:309–324CrossRefGoogle Scholar
  33. Montero-Hadjadje M, Elias S, Chevalier L, Benard M, Tanguy Y, Turquier V et al (2009) Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N- and C-terminal peptides. J Biol Chem 284:12420–12431CrossRefPubMedPubMedCentralGoogle Scholar
  34. Montesinos MS, Machado JD, Camacho M, Diaz J, Morales YG, Alvarez de la Rosa D et al (2008) The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse. J Neurosci 28:3350–3358CrossRefPubMedGoogle Scholar
  35. Mosharov EV, Gong LW, Khanna B, Sulzer D, Lindau M (2003) Intracellular patch electrochemistry: regulation of cytosolic catecholamines in chromaffin cells. J Neurosci 23:5835–5845PubMedGoogle Scholar
  36. Nanavati C, Fernandez JM (1993) The secretory granule matrix: a fast-acting smart polymer. Science 259:963–965CrossRefPubMedGoogle Scholar
  37. Natori S, Huttner WB (1996) Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci U S A 93:4431–4436CrossRefPubMedPubMedCentralGoogle Scholar
  38. Obermuller S, Calegari F, King A, Lindqvist A, Lundquist I, Salehi A et al (2010) Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS One 5:e8936CrossRefPubMedPubMedCentralGoogle Scholar
  39. Park HY, So SH, Lee WB, You SH, Yoo SH (2002) Purification, pH-dependent conformational change, aggregation, and secretory granule membrane binding property of secretogranin II (chromogranin C). Biochemistry 41:1259–1266CrossRefPubMedGoogle Scholar
  40. Pasqua T, Mahata S, Bandyopadhyay GK, Biswas A, Perkins GA, Sinha-Hikim AP et al (2016) Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo. Cell Tissue Res 363:693–712CrossRefPubMedGoogle Scholar
  41. Rosa P, Gerdes HH (1994) The granin protein family: markers for neuroendocrine cells and tools for the diagnosis of neuroendocrine tumors. J Endocrinol Investig 17:207–225CrossRefGoogle Scholar
  42. Rosa P, Hille A, Lee RW, Zanini A, De Camilli P, Huttner WB (1985) Secretogranins I and II: two tyrosine-sulfated secretory proteins common to a variety of cells secreting peptides by the regulated pathway. J Cell Biol 101:1999–2011CrossRefPubMedGoogle Scholar
  43. Sombers LA, Maxson MM, Ewing AG (2007) Multicore vesicles: hyperosmolarity and L-DOPA induce homotypic fusion of dense core vesicles. Cell Mol Neurobiol 27:681–685CrossRefPubMedPubMedCentralGoogle Scholar
  44. Stettler H, Beuret N, Prescianotto-Baschong C, Fayard B, Taupenot L, Spiess M (2009) Determinants for chromogranin A sorting into the regulated secretory pathway are also sufficient to generate granule-like structures in non-endocrine cells. Biochem J 418:81–91CrossRefPubMedGoogle Scholar
  45. Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149CrossRefPubMedGoogle Scholar
  46. Taupenot L, Harper KL, O’Connor DT (2005) Role of H+−ATPase-mediated acidification in sorting and release of the regulated secretory protein chromogranin A: evidence for a vesiculogenic function. J Biol Chem 280:3885–3897CrossRefPubMedGoogle Scholar
  47. Tooze SA, Huttner WB (1990) Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell 60:837–847CrossRefPubMedGoogle Scholar
  48. Videen JS, Mezger MS, Chang YM, O'Connor DT (1992) Calcium and catecholamine interactions with adrenal chromogranins. Comparison of driving forces in binding and aggregation. J Biol Chem 267:3066–3073PubMedGoogle Scholar
  49. Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528CrossRefPubMedGoogle Scholar
  50. Yoo SH (1996) pH- and Ca(2+)-dependent aggregation property of secretory vesicle matrix proteins and the potential role of chromogranins A and B in secretory vesicle biogenesis. J Biol Chem 271:1558–1565PubMedGoogle Scholar
  51. Yoo SH (2010) Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 24:653–664CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yoo SH, Albanesi JP (1990) Ca2(+)-induced conformational change and aggregation of chromogranin A. J Biol Chem 265:14414–14421PubMedGoogle Scholar
  53. Yoo SH, Albanesi JP (1991) High capacity, low affinity Ca2+ binding of chromogranin A. Relationship between the pH-induced conformational change and Ca2+ binding property. J Biol Chem 266:7740–7745PubMedGoogle Scholar
  54. Zhao E, Zhang D, Basak A, Trudeau VL (2009) New insights into granin-derived peptides: evolution and endocrine roles. Gen Comp Endocr 164:161–174CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leandro Castañeyra
    • 1
  • Michelle Juan-Bandini
    • 1
  • Natalia Domínguez
    • 1
    • 2
  • José David Machado
    • 1
  • Ricardo Borges
    • 1
    Email author
  1. 1.Unidad de FarmacologíaFacultad de Medicina, Universidad de La LagunaTenerifeSpain
  2. 2.VU Medical Center, Clinical GeneticsAmsterdamNetherlands

Personalised recommendations