Skip to main content

Chromogranins and the Quantum Release of Catecholamines

  • Chapter
  • First Online:
  • 308 Accesses

Part of the book series: UNIPA Springer Series ((USS))

Abstract

Chromogranins (Cgs) are the most abundant intravesicular proteins of chromaffin granules. Using Cgs knockout mice, we found that the lack of chromogranin A (CgA), chromogranin B (CgB) or both drastically reduce the vesicular content of catecholamines (CA), impair its accumulation in granules and largely affect the kinetics of exocytosis. Conversely, the overexpression of CgA induces the genesis of vesicles, increases their quantal content and even transforms non-secretory in cells capable to secrete substances. We conclude that Cgs contribute to a highly efficient system that directly mediates monoamine accumulation and regulates the exocytotic process.

We dedicate this review to Prof. Hans-Hermann Gerdes who passed away in August 18, 2013. He largely contributed to enhance our knowledge of the functional roles of chromogranins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CA:

Catecholamines

CgA:

Chromogranin A

CgA&B:

Chromogranins A and B

CgB:

Chromogranin B

Cgs:

Chromogranins

KO:

Knockout

LDCV:

Large dense core vesicle

SgII:

Secretogranin II

VMAT:

Vesicular mono-amine transporter

VNUT:

Vesicular nucleotide transporter

WT:

Wild type animals

References

  • Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389:509–512

    Article  CAS  PubMed  Google Scholar 

  • Beuret N, Stettler H, Renold A, Rutishauser J, Spiess M (2004) Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. J Biol Chem 279:20242–20249

    Article  CAS  PubMed  Google Scholar 

  • Blaschko H, Comline RS, Schneider FH, Silver M, Smith AD (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59

    Article  CAS  PubMed  Google Scholar 

  • Borges R (2013) The ATP or the natural history of neurotransmission. Purinergic Signal 9:5–6

    Article  CAS  PubMed  Google Scholar 

  • Camacho M, Machado JD, Montesinos MS, Criado M, Borges R (2006) Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells. J Neurochem 96:324–334

    Article  CAS  PubMed  Google Scholar 

  • Camacho M, Machado JD, Alvarez J, Borges R (2008) Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells. J Biol Chem 283:22383–22389

    Article  CAS  PubMed  Google Scholar 

  • Colliver TL, Pyott SJ, Achalabun M, Ewing AG (2000) VMAT-mediated changes in quantal size and vesicular volume. J Neurosci 20:5276–5282

    CAS  PubMed  Google Scholar 

  • Courel M, Rodemer C, Nguyen ST, Pance A, Jackson AP, O'Connor DT et al (2006) Secretory granule biogenesis in sympathoadrenal cells: identification of a granulogenic determinant in the secretory prohormone chromogranin A. J Biol Chem 281:38038–38051

    Article  CAS  PubMed  Google Scholar 

  • Crivellato E, Nico B, Ribatti D (2008) The chromaffin vesicle: advances in understanding the composition of a versatile, multifunctional secretory organelle. Anat Rec 291:1587–1602

    Article  Google Scholar 

  • Day R, Gorr SU (2003) Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor? Trends Endocrinol Metab 14:10–13

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vera J, Morales YG, Hernandez-Fernaud JR, Camacho M, Montesinos MS, Calegari F et al (2010) Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 30:950–957

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vera J, Camacho M, Machado JD, Dominguez N, Montesinos MS, Hernandez-Fernaud JR et al (2012) Chromogranins A and B are key proteins in amine accumulation, but the catecholamine secretory pathway is conserved without them. FASEB J 26:430–438

    Article  CAS  PubMed  Google Scholar 

  • Dominguez N, Estevez-Herrera J, Borges R, Machado JD (2014) The interaction between chromogranin A and catecholamines governs exocytosis. FASEB J 28:4657–4667

    Article  CAS  PubMed  Google Scholar 

  • Ehrhart M, Grube D, Bader MF, Aunis D, Gratzl M (1986) Chromogranin A in the pancreatic islet: cellular and subcellular distribution. J Histochem Cytochem 34:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Estevez-Herrera J, Dominguez N, Pardo MR, Gonzalez-Santana A, Westhead EW, Borges R et al (2016a) ATP: the crucial component of secretory vesicles. Proc Natl Acad Sci U S A 113:E4098–E4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estevez-Herrera J, Gonzalez-Santana A, Baz-Davila R, Machado JD, Borges R (2016b) The intravesicular cocktail and its role in the regulation of exocytosis. J Neurochem 137:897–903

    Article  CAS  PubMed  Google Scholar 

  • Glombik MM, Kromer A, Salm T, Huttner WB, Gerdes HH (1999) The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 18:1059–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong LW, Hafez I, Alvarez de Toledo G, Lindau M (2003) Secretory vesicles membrane area is regulated in tandem with quantal size in chromaffin cells. J Neurosci 23:7917–7921

    CAS  PubMed  Google Scholar 

  • Helle KB (2004) The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 79:769–794

    Article  PubMed  Google Scholar 

  • Helle KB, Reed RK, Pihl KE, Serck-Hanssen G (1985) Osmotic properties of the chromogranins and relation to osmotic pressure in catecholamine storage granules. Acta Physiol Scand 123:21–33

    Article  CAS  PubMed  Google Scholar 

  • Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886

    Article  CAS  PubMed  Google Scholar 

  • Hendy GN, Li T, Girard M, Feldstein RC, Mulay S, Desjardins R et al (2006) Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Mol Endocrinol 20:1935–1947

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Jeon SH, Yoo SH (2003) Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 278:40581–40589

    Article  CAS  PubMed  Google Scholar 

  • Huttner WB, Gerdes HH, Rosa P (1991) The granin (chromogranin/secretogranin) family. Trends Biochem Sci 16:27–30

    Article  CAS  PubMed  Google Scholar 

  • Iacangelo AL, Eiden LE (1995) Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. Regul Pept 58:65–88

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106:499–509

    Article  CAS  PubMed  Google Scholar 

  • Kopell WN, Westhead EW (1982) Osmotic pressures of solutions of ATP and catecholamines relating to storage in chromaffin granules. J Biol Chem 257:5707–5710

    CAS  PubMed  Google Scholar 

  • Koshimizu H, Kim T, Cawley NX, Loh YP (2010) Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis. Regul Pept 160:153–159

    Article  CAS  PubMed  Google Scholar 

  • Kromer A, Glombik MM, Huttner WB, Gerdes HH (1998) Essential role of the disulfide-bonded loop of chromogranin B for sorting to secretory granules is revealed by expression of a deletion mutant in the absence of endogenous granin synthesis. J Cell Biol 140:1331–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Hook V (2009) Proteolytic fragments of chromogranins A and B represent major soluble components of chromaffin granules, illustrated by two-dimensional proteomics with NH2-terminal edman peptide sequencing and MALDI-TOF MS. Biochemistry 48:5254–5262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahapatra NR, O'Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S et al (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y (2008) Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 192:309–324

    Article  CAS  Google Scholar 

  • Montero-Hadjadje M, Elias S, Chevalier L, Benard M, Tanguy Y, Turquier V et al (2009) Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N- and C-terminal peptides. J Biol Chem 284:12420–12431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montesinos MS, Machado JD, Camacho M, Diaz J, Morales YG, Alvarez de la Rosa D et al (2008) The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse. J Neurosci 28:3350–3358

    Article  CAS  PubMed  Google Scholar 

  • Mosharov EV, Gong LW, Khanna B, Sulzer D, Lindau M (2003) Intracellular patch electrochemistry: regulation of cytosolic catecholamines in chromaffin cells. J Neurosci 23:5835–5845

    CAS  PubMed  Google Scholar 

  • Nanavati C, Fernandez JM (1993) The secretory granule matrix: a fast-acting smart polymer. Science 259:963–965

    Article  CAS  PubMed  Google Scholar 

  • Natori S, Huttner WB (1996) Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci U S A 93:4431–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obermuller S, Calegari F, King A, Lindqvist A, Lundquist I, Salehi A et al (2010) Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS One 5:e8936

    Article  PubMed  PubMed Central  Google Scholar 

  • Park HY, So SH, Lee WB, You SH, Yoo SH (2002) Purification, pH-dependent conformational change, aggregation, and secretory granule membrane binding property of secretogranin II (chromogranin C). Biochemistry 41:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Pasqua T, Mahata S, Bandyopadhyay GK, Biswas A, Perkins GA, Sinha-Hikim AP et al (2016) Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo. Cell Tissue Res 363:693–712

    Article  CAS  PubMed  Google Scholar 

  • Rosa P, Gerdes HH (1994) The granin protein family: markers for neuroendocrine cells and tools for the diagnosis of neuroendocrine tumors. J Endocrinol Investig 17:207–225

    Article  CAS  Google Scholar 

  • Rosa P, Hille A, Lee RW, Zanini A, De Camilli P, Huttner WB (1985) Secretogranins I and II: two tyrosine-sulfated secretory proteins common to a variety of cells secreting peptides by the regulated pathway. J Cell Biol 101:1999–2011

    Article  CAS  PubMed  Google Scholar 

  • Sombers LA, Maxson MM, Ewing AG (2007) Multicore vesicles: hyperosmolarity and L-DOPA induce homotypic fusion of dense core vesicles. Cell Mol Neurobiol 27:681–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stettler H, Beuret N, Prescianotto-Baschong C, Fayard B, Taupenot L, Spiess M (2009) Determinants for chromogranin A sorting into the regulated secretory pathway are also sufficient to generate granule-like structures in non-endocrine cells. Biochem J 418:81–91

    Article  CAS  PubMed  Google Scholar 

  • Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149

    Article  CAS  PubMed  Google Scholar 

  • Taupenot L, Harper KL, O’Connor DT (2005) Role of H+−ATPase-mediated acidification in sorting and release of the regulated secretory protein chromogranin A: evidence for a vesiculogenic function. J Biol Chem 280:3885–3897

    Article  CAS  PubMed  Google Scholar 

  • Tooze SA, Huttner WB (1990) Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell 60:837–847

    Article  CAS  PubMed  Google Scholar 

  • Videen JS, Mezger MS, Chang YM, O'Connor DT (1992) Calcium and catecholamine interactions with adrenal chromogranins. Comparison of driving forces in binding and aggregation. J Biol Chem 267:3066–3073

    CAS  PubMed  Google Scholar 

  • Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH (1996) pH- and Ca(2+)-dependent aggregation property of secretory vesicle matrix proteins and the potential role of chromogranins A and B in secretory vesicle biogenesis. J Biol Chem 271:1558–1565

    CAS  PubMed  Google Scholar 

  • Yoo SH (2010) Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 24:653–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SH, Albanesi JP (1990) Ca2(+)-induced conformational change and aggregation of chromogranin A. J Biol Chem 265:14414–14421

    CAS  PubMed  Google Scholar 

  • Yoo SH, Albanesi JP (1991) High capacity, low affinity Ca2+ binding of chromogranin A. Relationship between the pH-induced conformational change and Ca2+ binding property. J Biol Chem 266:7740–7745

    CAS  PubMed  Google Scholar 

  • Zhao E, Zhang D, Basak A, Trudeau VL (2009) New insights into granin-derived peptides: evolution and endocrine roles. Gen Comp Endocr 164:161–174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

LC is the recipient of a fellowship from the Fundación CajaCanarias. This work is partially funded by the grant BFU2013-45253-P from the MINECO (Spain) to RB and JDM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Borges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castañeyra, L., Juan-Bandini, M., Domínguez, N., Machado, J.D., Borges, R. (2017). Chromogranins and the Quantum Release of Catecholamines. In: Angelone, T., Cerra, M., Tota, B. (eds) Chromogranins: from Cell Biology to Physiology and Biomedicine. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-58338-9_15

Download citation

Publish with us

Policies and ethics