Skip to main content

The Making of Flowers

  • Chapter
  • First Online:
Book cover The Dawn Angiosperms

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 810 Accesses

Abstract

The making of flowers is the key question in the origin of angiosperms. Two rivaling schools in botany have been fighting against each other on the nature of carpel in the past centuries. This prolonged controversy over the carpel may end if placenta is separated from ovarian wall. This separation is supported by evidence from various fields. Observations of the organization of floral parts in some angiosperms indicate that the formerly assumed primitive carpel may not be as assumed. Extrapolation from such interpretation of angiosperm gynoecium leads to a new hypothesis unifying not only angiosperms but also all known seed plants or even all land plants. Although needing further testing, this hypothesis appears more plausible than the traditional one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arber EAN, Parkin J (1907) On the origin of angiosperms. J Linn Soc Lond Bot 38:29–80

    Article  Google Scholar 

  • Arndt S (2002) Morphologie und Systematik ausgewählter Mesozoischer Koniferen. Paläontographica B 262:1–23

    Google Scholar 

  • Axsmith BJ, Serbet R, Krings M, Taylor TN, Taylor EL, Mamay SH (2003) The enigmatic Paleozoic plants Spermopteris and Phasmatocycas reconsidered. Am J Bot 90:1585–1595

    Article  Google Scholar 

  • Axsmith BJ, Andrews FM, Fraser NC (2004) The structure and phylogentic significance of the conifer Pseudohirmerella delawarenesis nov. comb. from the upper Triassic of North America. Rev Palaeobot Palynol 129:251–263

    Article  Google Scholar 

  • Bai SN (2015) Plant developmental program: sexual reproduction cycle derived “double ring”. Sci Sin Vitae 45:811–819

    Article  Google Scholar 

  • Baillon H (1871) The natural history of plants. I. L. Reeve, London

    Book  Google Scholar 

  • Baillon H (1880) Histoire Des Plantes. Hatchet, Paris

    Google Scholar 

  • Benson M (1908) Miadesmia membranacea, a new Palaeozoic lycopod with a seed-like structure. Philos Trans R Soc B 199:409–425

    Article  Google Scholar 

  • Bertrand CE (1911) Le bourgeon femelle des cordaites d’ apres les preparations de Bernard Renault. Bulletin des Séances de la Société des Sciences de Nancy 1911:29–84

    Google Scholar 

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillan, New York

    Google Scholar 

  • Boke NH (1963) Anatomy and development of the flower and fruit of Pereskia pititache. Am J Bot 50:843–858

    Article  Google Scholar 

  • Boke NH (1964) The Cactus gynoecium: a new interpretation. Am J Bot 51:598–610

    Article  Google Scholar 

  • Boke NH (1968) Structure and development of the flower and fruit of Pereskia diaz-romeroana. Am J Bot 55:1254–1260

    Article  Google Scholar 

  • Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant Gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097

    Article  Google Scholar 

  • Bowman JL, Baum SF, Eshed Y, Putterill J, Alvarez J (1999) Molecular genetics of gynoecium development in Arabidopsis. Curr Top Dev Biol 45:155–205

    Article  Google Scholar 

  • Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS (2009) Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int J Plant Sci 170:627–643

    Article  Google Scholar 

  • Buzgo M, Soltis Pamela S, Soltis Douglas E (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:925–947

    Article  Google Scholar 

  • Carlquist S (1995) Wood anatomy of Caryophyllaceae: ecological, habital, systematic, and phylogenetic implications. Aliso 14:1–17

    Article  Google Scholar 

  • Chaw S, Zharkikh MA, Sung HM, Lau TC, Li WH (1997) Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol 14:56–68

    Article  Google Scholar 

  • Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086–4091

    Article  Google Scholar 

  • Chen L, Xiao S, Pang K, Zhou C, Yuan X (2014) Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils. Nature 516:238–241

    Article  Google Scholar 

  • Costanza SH (1985) Pennsylvanioxylon of Middle and Upper Pennsylvanian coals from the Illinois basin and its comparison with Mesoxylon. Paläontographica B 197:81–121

    Google Scholar 

  • Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Mo Bot Gard 72:716–793

    Article  Google Scholar 

  • Crane PR, Dilcher DL (1984) Lesqueria: an early angiosperm fruit from the mid-Cretaceous of Central U.S.A. Ann Mo Bot Gard 71:384–402

    Article  Google Scholar 

  • Crane PR, Kenrick P (1997) Diverted development of reproductive organs: a source of morphological innovation in land plants. Plant Syst Evol 206:161–174

    Article  Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants. New York Botanical Garden, Bronx

    Google Scholar 

  • Cúneo NR, Escapa I, Tomescu AMF (2015) Early Permian sphenophyllales from Patagonia, a reappraisal. 572. In: Botanical Society of America Annual Meeting. Edmonton, Alberta, p 229

    Google Scholar 

  • Decraene LPR, Vanvinckenroye P, Smets EF (1997) A study of floral morphological diversity in Phytolacca (Phytolaccaceae) based on early floral ontogeny. Int J Plant Sci 158:57–72

    Article  Google Scholar 

  • Dilcher DL, Crane PR (1984) Archaenthus: an early angiosperm from the Cenomanian of the Western Interior of North America. Ann Mo Bot Gard 71:351–383

    Article  Google Scholar 

  • Dilcher DL, Kovach W (1986) Early angiosperm reproduction: Caloda delevoryana gen. et sp. nov., a new fructification from the Dakota Formation (Cenomanian) of Kansas. Am J Bot 73:1230–1237

    Article  Google Scholar 

  • Dilcher DL, Sun G, Ji Q, Li H (2007) An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. Proc Natl Acad Sci USA 104:9370–9374

    Article  Google Scholar 

  • Doyle JA (1978) Origin of angiosperms. Annu Rev Ecol Syst 9:365–392

    Article  Google Scholar 

  • Doyle JA (2006) Seed ferns and the origin of angiosperms. J Torrey Bot Soc 133:169–209

    Article  Google Scholar 

  • Doyle JA (2008) Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int J Plant Sci 169:816–843

    Article  Google Scholar 

  • Doyle JA, Endress PK (2010) Integrating early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. J Syst Evol 48:1–35

    Article  Google Scholar 

  • Dupler AW (1920) Ovuliferous structures of Taxus canadensis. Bot Gaz 69:492–520

    Article  Google Scholar 

  • Eames AJ (1926) The role of flower anatomy in the determination of angiosperm phylogeny. In: International Congress of Plant sciences, Section of morphology, histology, and paleobotany. Ithaca, New York, pp 423–427

    Google Scholar 

  • Eames AJ (1931) The vascular anatomy of the flower with refutation of the theory of carpel polymorphism. Am J Bot 18:147–188

    Article  Google Scholar 

  • Eames AJ (1952) The relationships of Ephedrales. Phytomorphology 2:79–100

    Google Scholar 

  • Eames AJ (1961) Morphology of the angiosperms. McGraw-Hill, New York

    Book  Google Scholar 

  • Endress PK, Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96:22–66

    Article  Google Scholar 

  • Endress PK, Igersheim A (2000a) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161:S211–S223

    Article  Google Scholar 

  • Endress PK, Igersheim A (2000b) The reproductive structures of the basal angiosperm Amborella trichopoda (Amborellaceae). Int J Plant Sci 161:S237–S248

    Article  Google Scholar 

  • Endress PK, Lorence DH (1983) Diversity and evolutionary trends in the floral structure of Tambourissa (The Monimiaceae). Plant Syst Evol 142:53–81

    Article  Google Scholar 

  • Engler A, Prantl K (1889) Die natuerlichen Pflanzenfamilien, II. Verlag von Wilhelm Engelmann, Leipizig

    Google Scholar 

  • Fagerlind F (1946) Strobilus und Bluete von Gnetum und die Moglichkeit aus ihrer Structur den Bluetenbau der Angiospermen zu deuten. Arkiv fur Botanik 33A:1–57

    Google Scholar 

  • Florin R (1939) The morphology of the female fructifications in cordaites and conifers of Palaeozoic age. Bot Notiser 36:547–565

    Google Scholar 

  • Florin R (1944) Die Koniferen des Oberkarbons und des unteren Perms. Paläontographica B 85:457–654

    Google Scholar 

  • Florin R (1949) The morphology of Trichopitys heteromorpha Saporta, a seed plant of Palaeozoic age, and the evolution of the female flowers in the Ginkgoinae. Acta Horti Bergiani 15:79–109

    Google Scholar 

  • Florin R (1951) Evolution in cordaites and conifers. Acta Horti Bergiani 15:285–388

    Google Scholar 

  • Florin R (1954) The female reproductive organs of conifers and taxads. Biol Rev Camb Philos Soc 29:367–389

    Article  Google Scholar 

  • Foster AS, Gifford EM (1974) Comparative morphology of vascular plants. W. H. Freeman, New York

    Google Scholar 

  • Friedman WE (1994) The evolution of embryogeny in seed plants and the developmental origin and early history of endosperm. Am J Bot 81:1468–1486

    Article  Google Scholar 

  • Friedman WE (2008) Hydatellaceae are water lilies with gymnospermous tendencies. Nature 453:94–97

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2001) Fossil evidence of water lilies (Nymphaeales) in the early cretaceous. Nature 410:357–360

    Article  Google Scholar 

  • Friis EM, Doyle JA, Endress PK, Leng Q (2003) Archaefructus—angiosperm precursor or specialized early angiosperm? Trends Plant Sci 8:S369–S373

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2005) When earth started blooming: insights from the fossil record. Curr Opin Plant Biol 8:5–12

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr Palaeoclimatol Palaeoecol 232:251–293

    Article  Google Scholar 

  • Friis EM, Pedersen KR, von Balthazar M, Grimm GW, Crane PR (2009) Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the early cretaceous of Portugal. Int J Plant Sci 170:1086–1101

    Article  Google Scholar 

  • Friis EM, Crane PR, Pedersen KR (2011) The early flowers and angiosperm evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frohlich MW (2003) An evolutionary scenario for the origin of flowers. Nat Rev Genet 4:559–566

    Article  Google Scholar 

  • Galtier J, Béthoux O (2002) Morphology and growth habit of Dicksonites pluckenetii from the Upper Carboniferous of Graissessac. Geobios 35:525–535

    Article  Google Scholar 

  • Gerrienne P, Meyer-Berthaud B, Fairon-Demaret M, Streel M, Steemans P (2004) Runcaria, a Middle Devonian seed plant precursor. Science 306:856–858

    Article  Google Scholar 

  • Goethe JWV (1790) Versuch die Metamorphose der Pflanzen zu erklären. Carl Wilhelm Ettinger, Gotha

    Book  Google Scholar 

  • Guo X-M, Xiao X, Wang G-X, Gao R-F (2013) Vascular anatomy of Kiwi fruit and its implications for the origin of carpels. Front Plant Sci 4

    Google Scholar 

  • Han G, Liu Z, Wang X (2017) A Dichocarpum-like angiosperm from the early Cretaceous of China. Acta Geol Sin 90:1–8

    Article  Google Scholar 

  • Hao S, Xue J (2013a) Earliest record of megaphylls and leafy structures, and their initial diversification. Chin Sci Bull 58:2784–2793

    Article  Google Scholar 

  • Hao S, Xue J (2013b) The early Devonian Posongchong flora of Yunnan. Science Press, Beijing

    Google Scholar 

  • Hao S-G, Xue J-Z, Zhu X, Wang D-M (2012) A new genus of early Devonian plants with novel strobilar structures and vegetative appendages from the Posongchong Formation of Yunnan, China. Rev Palaeobot Palynol 171:73–82

    Article  Google Scholar 

  • Harris TM (1933) A new member of the Caytoniales. New Phytol 32:97–114

    Article  Google Scholar 

  • Harris TM (1940) Caytonia. Ann Bot Lond 4:713–734

    Article  Google Scholar 

  • Haupt AW (1953) Plant morphology. McGraw-Hill, New York

    Book  Google Scholar 

  • He CY, Münster T, Saedler H (2004) On the origin of morphological floral novelties. FEBS Lett 567:147–151

    Article  Google Scholar 

  • He CY, Saedler H (2005) Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc Natl Acad Sci USA 102:5797–5784

    Article  Google Scholar 

  • Herr JMJ (1995) The origin of the ovule. Am J Bot 82:547–564

    Article  Google Scholar 

  • Heywood VH, Brummitt RK, Culham A, Seberg O (2007) Flowering plant families of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Hilton J, Wang SJ, Galtier J, Bateman RM (2009a) Cordaitalean seed plants from the Early Permian of north China. III. Reconstruction of the Shanxioxylon taiyuanense plant. Int J Plant Sci 170:951–967

    Article  Google Scholar 

  • Hilton J, Wang S-J, Galtier J, Bateman RM (2009b) Cordaitalean seed plants from the Early Permian of North China. II. Reconstruction of Cordaixylon tianii. Int J Plant Sci 170:400–418

    Article  Google Scholar 

  • Hoffmann R (2003) Why buy that theory. Am Sci 91:9–11

    Article  Google Scholar 

  • Hufford L (1996) Developmental morphology of female flowers of Gyrostemon and Tersonia and floral evolution among Gyrostemonaceae. Am J Bot 83:1471–1487

    Article  Google Scholar 

  • Hunt KW (1937) A study of the style and stigma, with reference to the nature of the carpel. Am J Bot 24:288–295

    Article  Google Scholar 

  • Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004) Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin 78:883–896

    Google Scholar 

  • Johri BM, Ambegaokar KB (1984) Some unusual features in the embryology of angiosperms. Proc Indian Acad Sci (Plant Sci) 93:413–427

    Google Scholar 

  • Joshi AC (1938) The nature of the ovular stalk in Polygonaceae and some related families. Ann Bot 2:957–959

    Article  Google Scholar 

  • Judd WS, Campbell SC, Kellogg EA, Stevens PF (1999) Plant systematics: a phylogenetic approach. Sinauer, Sunderland, MA

    Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early diversification of land plants, a cladistic study. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Kerp JHF (1983) Apects of Permian palaeobotany and palynology I Sobernheimia jonkeri nov. gen. nov. sp., a new fossil plant of cycadalean affinity from the Waderner Group of Sobernheim. Rev Palaeobot Palynol 38:173–183

    Article  Google Scholar 

  • Krassilov VA (1977) Contributions to the knowledge of the Caytoniales. Rev Palaeobot Palynol 24:155–178

    Article  Google Scholar 

  • Kustatscher E, Van Konijnenburg-Van Cittert JHA, Bauer K, Krings M (2016) Strobilus organization in the enigmatic gymnosperm Bernettia inopinata from the Jurassic of Germany. Rev Palaeobot Palynol 232:151–161

    Article  Google Scholar 

  • Laubengayer RA (1937) Studies in the anatomy and morphology of the Polygonaceous flower. Am J Bot 24:329–343

    Article  Google Scholar 

  • Leng Q, Friis EM (2003) Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst Evol 241:77–88

    Article  Google Scholar 

  • Leng Q, Friis EM (2006) Angiosperm leaves associated with Sinocarpus infructescences from the Yixian formation (Mid-Early Cretaceous) of NE China. Plant Syst Evol 262:173–187

    Article  Google Scholar 

  • Li CS, Hsü J (1987) Studies on a new Devonian plant Protopteridophyton devonicum assigned to primitive fern from South China. Palaeontogr Abt B 207:111–131

    Google Scholar 

  • Li X, Yao Z (1983) Fructifications of gigantopterids from South China. Paläontogr B 185:11–26

    Google Scholar 

  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186:817–831

    Article  Google Scholar 

  • Lister G (1884) On the origin of the placentas in the tribe Alsineae of the order Caryophylleae. J Linn Soc Bot 20:423–429

    Article  Google Scholar 

  • Liu Z-J, Wang X (2016) An enigmatic Ephedra-like fossil lacking micropylar tube from the Lower Cretaceous Yixian Formation of Liaoning, China. Palaeoworld 25:67–75

    Article  Google Scholar 

  • Liu W-Z, Hilu K, Wang Y-L (2014) From leaf and branch into a flower: Magnolia tells the story. Bot Stud 55:28

    Article  Google Scholar 

  • Liu Z-J, Hou Y-M, Wang X (in progress) Zhangwuia: an enigmatic organ with bennettitalean appearance and enclosed ovules

    Google Scholar 

  • Lorence DH (1985) A monograph of the Monimiaceae (Laurales) in the Malagasy region (Southwest Indian Ocean). Ann Mo Bot Gard 72:1–165

    Article  Google Scholar 

  • Lu Z, Xu J, Li W, Zhang L, Cui J, He Q, Wang L, Jin B (2017) Transcriptomic analysis reveals mechanisms of sterile and fertile flower differentiation and development in Viburnum macrocephalum f. keteleeri. Front. Plant Sci 8:261

    Google Scholar 

  • Marilaun AKV (1894) The natural history of plants, their forms, growth, reproduction, and distribution. I. Biology and configuration of plants. Blackie & Son, London

    Google Scholar 

  • Martens P (1971) Les gnetophytes. Gebrueder Borntraeger, Berlin

    Google Scholar 

  • Mathews S, Kramer EM (2012) The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytol 194:910–923

    Article  Google Scholar 

  • Meeuse ADJ (1963) From ovule to ovary: a contribution to the phylogeny of the megasporangium. Acta Biotheor XVI:127–182

    Article  Google Scholar 

  • Mei M-T, Dilcher DL, Wan ZH (1992) A new seed-bearing leaf from the Permian of China. Palaeobotanist 41:98–109

    Google Scholar 

  • Melville R (1964) The origin of flowers. New Sci 22:494–496

    Google Scholar 

  • Meyen SV (1988) Origin of the angiosperm gynoecium by gamoheterotopy. Bot J Linn Soc 97:171–178

    Article  Google Scholar 

  • Mill RR, Moeller M, Christie F, Glidewell SM, Masson D, Williamson B (2001) Morphology, anatomy and ontogeny of female cones in Acmopyle pancheri (Brongn. & Gris.) Pilg. (Podocarpaceae). Ann Bot 88:55–67

    Article  Google Scholar 

  • Millay MA, Taylor TN (1976) Evolutionary trends in fossil gymnosperm pollen. Rev Palaeobot Palynol 21:65–91

    Article  Google Scholar 

  • Nuraliev MS, Sokoloff DD, Oskolski AA (2011) Floral anatomy of Asian Schefflera (Araliaceae, Apiales): comparing variation of flower groundplan and vascular patterns. Int J Plant Sci 172:735–762

    Article  Google Scholar 

  • Ogura Y (1972) Comparative anatomy of vegetative organs of the pteridophytes. Gebrueder Borntaeger, Berlin

    Google Scholar 

  • Payer JB (1857) Traite d’organogenie comparee de la fleurs. Librairie de Victor Masson, Paris

    Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  Google Scholar 

  • Pšenička J, Correia P, Šimůnek Z, Sá AA, Murphy JB, Flores D (2017) Revision of Ilfeldia and establishment of Ovulepteris gen. nov. from the Pennsylvanian of Europe, with a discussion on their concepts. Rev Palaeobot Palynol 236:59–73

    Article  Google Scholar 

  • Puri V (1952) Placentation in angiosperms. Bot Rev 18:603–651

    Article  Google Scholar 

  • Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  Google Scholar 

  • Qiu YL, Li LB, Wang B, Chen ZD, Dombrovska O, Lee J, Kent L, Li RQ, Jobson RW, Hendry TA et al (2007) A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Int J Plant Sci 168:691–708

    Article  Google Scholar 

  • Raghavan V (2005) Double fertilization: embryo and endosperm development in flowering plants. Springer, Berlin

    Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci 91:11841–11843

    Article  Google Scholar 

  • Retallack G, Dilcher DL (1981a) A coastal hypothesis for the dispersal and rise to dominance of flowering plants. In: Niklas KJ (ed) Paleobotany, paleoecology and evolution. Praeger, New York, pp 27–77

    Google Scholar 

  • Retallack G, Dilcher DL (1981b) Arguments for a glossopterid ancestry of angiosperms. Paleobiology 7:54–67

    Article  Google Scholar 

  • Roe JL, Nemhauser JL, Zambryski PC (1997) TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 9:335–353

    Article  Google Scholar 

  • Rothwell G (1982) Cordaianthus duquesnensis sp. nov., anatomically preserved ovulate cones from the Upper Pennsylvanian of Ohio. Am J Bot 69:239–247

    Article  Google Scholar 

  • Rothwell GW (1993) Cordaixylon dumusum (Cordaitales). II. Reproductive biology, phenology, and growth ecology. Int J Plant Sci 154:572

    Article  Google Scholar 

  • Rothwell GW, Serbet R (1994) Lignophyte phylogeny and the evolution of Spermatophytes: a numerical cladistic analysis. Syst Bot 19:443–482

    Article  Google Scholar 

  • Rothwell GW, Stockey RA (2010) Independent evolution of seed enclosure in the bennettitales: Evidence from the anatomically preserved cone Foxeoidea connatum gen. et sp. nov. Independent evolution of seed enclosure in the bennettitales: evidence from the anatomically preserved cone Foxeoidea connatum gen. et sp. nov. In: Gee CT (ed) Plants in the Mesozoic Time: innovations, phylogeny, ecosystems. Indiana University Press, Bloomington, IN, pp 51–64

    Google Scholar 

  • Rothwell GW, Stockey RA (2013) Evolution and phylogeny of Gnetophytes: evidence from the anatomically preserved seed cone Protoephedrites eamesii gen. et sp. nov. and the seeds of several Bennettitalean species. Int J Plant Sci 174:511–529

    Article  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Article  Google Scholar 

  • Rousseau P, Vorster PJ, Wyk AEv (2015) Reproductive anomalies in Encephalartos (Zamiaceae). In: Calonje M (ed) Cycad 2015, 10th International conference on Cycad biology. Cycad 2015 Organizing Committee, Medellín, Colombia, p 53

    Google Scholar 

  • Rudall PJ, Hilton J, Vergara-Silva F, Bateman RM (2011) Recurrent abnormalities in conifer cones and the evolutionary origins of flower-like structures. Trends Plant Sci 16:151–159

    Article  Google Scholar 

  • Sattler R, Lacroix C (1988) Development and evolution of basal cauline placentation: Basella rubra. Am J Bot 75:918–927

    Article  Google Scholar 

  • Sattler R, Perlin L (1982) Floral development of Bougainvillea spectabilis Willd., Boerhaavia diffusa L. and Mirabilis jalapa L. (Nyctaginaceae). Bot J Linn Soc 84:161–182

    Article  Google Scholar 

  • Schmid R (1980) Comparative anatomy and morphology of Psiloxylon and Heteropyxis, and the subfamilial and tribal classification of Myrtaceae. Taxon 29:559–595

    Article  Google Scholar 

  • Schmid R (1984) Reproductive anatomy and morphology of Myrtales in relation to systematics. Ann Mo Bot Gard 71:832–835

    Article  Google Scholar 

  • Schulz C, Kalus KV, Knopf P, Mundry M, Dörken V, Stützel T (2014) Male cone evolution in conifers: not all that simple. Am J Plant Sci 5:2842–2857

    Article  Google Scholar 

  • Schweitzer H-J (1963) Der weibliches Zapfen von Pseudovoltzia liebeana und seine Bedeutung fuer die Phylogenie der Koniferen. Paläontographica B 113:1–29

    Google Scholar 

  • Schweitzer H-J, Kirchner M (1998) Die Rhaeto-Jurassischen Floren des Iran und Afghanistans. 11. Pteridospermophyta und Cycadophyta I. Cycadales. Paläontographica Abt B 248:1–85

    Google Scholar 

  • Shi G, Leslie AB, Herendeen PS, Herrera F, Ichinnorov N, Takahashi M, Knopf P, Crane PR (2016) Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules. New Phytol 210:1418–1429

    Article  Google Scholar 

  • Skinner DJ, Hill TA, Gasser CS (2004) Regulation of ovule development. Plant Cell 16:S32–S45

    Article  Google Scholar 

  • Sporne KR (1974) The morphology of angiosperms. Hutchinson University Press, London

    Google Scholar 

  • Stopes MC (1918) New bennettitean cones from the British Cretaceous. Philos Trans R Soc Lond B 208:389–440

    Article  Google Scholar 

  • Strother PK (2016) Systematics and evolutionary significance of some new cryptospores from the Cambrian of eastern Tennessee, USA. Rev Palaeobot Palynol 227:28–41

    Article  Google Scholar 

  • Strother PK, Wood GD, Taylor WA, Beck JH (2004) Middle Cambrian cryptospores and origin of land plants. Memoir of the Association of Australasian Palaeontologists 29:99–113

    Google Scholar 

  • Stützel T (2010) Gnetophyta—a keystone in the evolution of flowering plants or a misunderstood conifer? In: 8th European Palaeobotany-Palynology conference. Budapest, Hungary, p 223

    Google Scholar 

  • Sun G, Dilcher DL, Zheng S, Zhou Z (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282:1692–1695

    Article  Google Scholar 

  • Sun G, Zheng S, Dilcher D, Wang Y, Mei S (2001) Early angiosperms and their associated plants from Western Liaoning, China. Shanghai Technology & Education Press, Shanghai

    Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods). Sinauer Associate, Sunderland, MA

    Google Scholar 

  • Takaso T, Tomlinson PB (1989) Aspects of cone and ovule ontogeny in Crytomeria (Taxodiaceae). Am J Bot 76:692–705

    Article  Google Scholar 

  • Takhtajan A (1980) Outline of the classification of flowering plants (magnoliophyta). Bot Rev 46:225–359

    Article  Google Scholar 

  • Taylor DW (1991) Angiosperm ovule and carpels: their characters and polarities, distribution in basal clades, and structural evolution. Postilla 208:1–40

    Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany: the biology and evolution of fossil plants. Elsevier, Amsterdam

    Google Scholar 

  • Thomas HH (1931) The early evolution of the angiosperms. Ann Bot os-45:647–672

    Article  Google Scholar 

  • Thompson JM (1934) Studies in advancing sterility. VII. The state of flowering known as angiospermy (with special reference to placentation and the origin and nature of follicles and achenes). Univ Liverpool Publ Hartley Bot Lab 72:47

    Google Scholar 

  • Thomson BF (1942) The floral morphology of the Caryophyllaceae. Am J Bot 29:333–349

    Article  Google Scholar 

  • Tomlinson PB (1992) Aspects of cone morphology and development in Podocarpaceae (Coniferales). Int J Plant Sci 153:572–588

    Article  Google Scholar 

  • Tomlinson PB, Takaso T (2002) Seed cone structure in conifers in relation to development and pollination: a biological approach. Can J Bot 80:1250–1273

    Article  Google Scholar 

  • Tomlinson PB, Takaso T, Rattenbury JA (1989) Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Bot J Linn Soc 99:209–221

    Article  Google Scholar 

  • Tomlinson PB, Braggins JE, Rattenbury JA (1991) Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproductive mechanism. Am J Bot 78:1289–1303

    Article  Google Scholar 

  • Van Heel WA (1981) A SEM-investigation on the development of free carpels. Blumea 27:499–522

    Google Scholar 

  • Vanvinckenroye P, Smets E (1996) Floral ontogeny of five species of Talinum and of related taxa (Portulacaceae). J Plant Res 109:387–402

    Article  Google Scholar 

  • Vazquez-Lobo A, Carlsbecker A, Vergara-Silva F, Alvarez-Buylla ER, Pinero D, Engstrom P (2007) Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms. Evol Dev 9:446–459

    Article  Google Scholar 

  • Wang S-J (1997) A study on origin and evolution of Cordaitaceae in Late Paleozoic. Acta Phytotaxonomica Sin 35:303–310

    Google Scholar 

  • Wang X (2010) Axial nature of cupule-bearing organ in Caytoniales. J Syst Evol 48:207–214

    Article  Google Scholar 

  • Wang X, Luo B (2013) Mechanical pressure, not genes, makes ovulate parts leaf-like in Cycas. Am J Plant Sci 4:53–57

    Article  Google Scholar 

  • Wang S-J, Tian B-L (1993) On female cordaitean reporductive organs in coal balls from Taiyuan Formation, Xishan coal-field, Taiyuan, Shanxi. Acta Palaeontol Sin 32:760–764

    Google Scholar 

  • Wang X (2009) New fossils and new hope for the origin of angiosperms. New fossils and new hope for the origin of angiosperms. In: Pontarotti P (ed) Evolutionary biology: concept, modeling and application. Springer, Berlin, pp 51–70

    Chapter  Google Scholar 

  • Wang X, Wang S (2010) Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiospermy. Acta Geol Sin 84:47–55

    Article  Google Scholar 

  • Wang X, Han G (2011) The earliest ascidiate carpel and its implications for angiosperm evolution. Acta Geol Sin 85:998–1002

    Article  Google Scholar 

  • Wang X, Zheng S (2009) The earliest normal flower from Liaoning Province, China. J Integr Plant Biol 51:800–811

    Article  Google Scholar 

  • Wang X, Zheng X-T (2012) Reconsiderations on two characters of early angiosperm Archaefructus. Palaeoworld 21:193–201

    Article  Google Scholar 

  • Wang S-J, Hilton J, Tian B, Galtier J (2003) Cordaitalean seed plants from the early Permian of north China. I. Delimitation and reconstruction of the Shanxioxylon sinense plant. Int J Plant Sci 164:89–112

    Article  Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007a) Schmeissneria: a missing link to angiosperms? BMC Evol Biol 7:14

    Article  Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007b) Is Jurassic Schmeissneria an angiosperm? Acta Palaeontol Sin 46:486–490

    Google Scholar 

  • Wang X, Dilcher DL, Lott T, Li Y (2008) Parapodocarpus gen. nov. and its implications for interpreting the ovulate organ in the Podocarpaceae. Geophytology 37:1–8

    Google Scholar 

  • Wang SJ, Bateman RM, Spencer ART, Wang J, Shao L, Hilton J (2017) Anatomically preserved “strobili” and leaves from the Permian of China (Dorsalistachyaceae, fam. nov.) broaden knowledge of Noeggerathiales and constrain their possible taxonomic affinities. Am J Bot 104:127–149

    Article  Google Scholar 

  • Wang X, Liu Z-J, Liu W, Zhang X, Guo X, Hu G, Zhang S, Wang Y, Liao W (2015) Breaking the stasis of current plant systematics. Sci Tech Rev 33:97–105

    Google Scholar 

  • Wilf P, Carvalho MR, Gandolfo MA, Cúneo NR (2017) Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355:71–75

    Article  Google Scholar 

  • Wilson CL (1953) The telome theory. Bot Rev 19:417–437

    Article  Google Scholar 

  • Worsdell WC (1898) The vascular structure of the sporophylls of the Cycadaceae. Ann Bot 12:203–241

    Article  Google Scholar 

  • Yamada T, Ito M, Kato M (2004) YABBY2-Homologue expression in lateral organs of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:917–924

    Article  Google Scholar 

  • Yin L, Zhao Y, Bian L, Peng J (2013) Comparison between cryptospores from the Cambrian Log Cabin Member, Pioche Shale, Nevada, USA and similar specimens from the Cambrian Kaili Formation, Guizhou,China. Sci Chin D Earth Sci 56:703–709

    Article  Google Scholar 

  • Zhang X (2013) The evolutionary origin of the integument in seed plants, Anatomical and functional constraints as stepping stones towards a new understanding. Ruhr-Universität Bochum, Bochum

    Google Scholar 

  • Zhang X, Liu W, Wang X (2017) How the ovules get enclosed in magnoliaceous carpels. PLoS One 12:e0174955

    Article  Google Scholar 

  • Zhang Q, Xing S-P, Hu Y-X, Lin J-X (2000) Cone and ovule development in Platycladus orientalis (Cupressaceae). Acta Bot Sin 42:564–569

    Google Scholar 

  • Zheng S, Zhou Z (2004) A new Mesozoic Ginkgo from western Liaoning, China and its evolutionary significance. Rev Palaeobot Palynol 131:91–103

    Article  Google Scholar 

  • Zheng H-C, Ma S-W, Chai T-Y (2010) The ovular development and perisperm formation of Phytolacca americana (Phytolaccaceae) and their systematic significance in Caryophyllales. J Syst Evol 48:318–325

    Article  Google Scholar 

  • Zhou Z, Zheng S (2003) The missing link in Ginkgo evolution. Nature 423:821–822

    Article  Google Scholar 

  • Zhou Z, Zheng S, Zhang L (2007) Morphology and age of Yimaia (Ginkgoales) from Daohugou Village, Ningcheng, Inner Mongolia, China. Cretac Res 28:348–362

    Article  Google Scholar 

  • Zhu JN, Du XM (1981) A new cycad – Primocycas chinensis gen. et sp. nov. discovered from the Lower Permian in Shanxi, China and its significance. Acta Bot Sin 23:401–404

    Google Scholar 

  • Zimmermann W (1959) Die Phylogenie der Pflanzen. Fischer, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, X. (2018). The Making of Flowers. In: The Dawn Angiosperms. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-58325-9_8

Download citation

Publish with us

Policies and ethics