Skip to main content

New Forms of Natural Philosophy and Mixed Mathematics

  • Chapter
  • First Online:
Book cover The Path to Post-Galilean Epistemology

Part of the book series: History of Mechanism and Machine Science ((HMMS,volume 34))

  • 742 Accesses

Abstract

Between the sixteenth and seventeenth centuries natural philosophy underwent great changes. Formal and final causes were replaced by efficient causes and the world became a huge machine. Greek philosophy turned toward mechanistic philosophy, a kind of philosophy more easily digestible by nonprofessional philosophers, mathematicians in particular. This change occurred in a period where specializations were not pushed away as today. Many of those who were called mathematicians could actually have a solid background in the philosophy of nature and sometimes even in metaphysics and theology. On the other hand, those who were called philosophers also had in general a mathematical preparation, not always deep but in many cases not negligible. The dichotomy, mathematician (philosopher)-philosopher (mathematician), does not cover the entire industry that today is associated with scientific knowledge. There were also physicians, alchemists, natural magicians, and educated technicians. However, they also had a nonspecialized culture and moved between natural philosophy and mathematics. All of them could so easily take possession of themes of the new philosophy of nature and integrate it into the already waiting conceptual framework of the mixed mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    p. 84.

  2. 2.

    Regarding the possibility of using a unique label (Aristotelians) to identify philosophers variously connected to Aristotle see [83, 224, 225].

  3. 3.

    pp. 135–138.

  4. 4.

    p. 210

  5. 5.

    p. 83.

  6. 6.

    p. 60.

  7. 7.

    p. 392.

  8. 8.

    p. 106.

  9. 9.

    p. 32.

  10. 10.

    p. 120.

  11. 11.

    f. 108 v.

  12. 12.

    p. 605.

  13. 13.

    p. 101.

  14. 14.

    pp. 96–97

  15. 15.

    p. 98.

  16. 16.

    p. 177.

  17. 17.

    pp. 238–239.

  18. 18.

    Liber II, Lectio 3, pp. 282, 284.

  19. 19.

    pp. 46–47.

  20. 20.

    pp. 21–22.

  21. 21.

    pp. 187–242.

  22. 22.

    p. 61.

  23. 23.

    p. 9.

  24. 24.

    pp. 331–332.

  25. 25.

    vol. 1, p. 275.

  26. 26.

    p. 330.

  27. 27.

    One possible interpretation, using a modern notation, is shown below:

    $$ \begin{aligned} (a:b) \,{:}{:}\, (c:d) \leftrightarrow \\ \forall m \forall n( ma\succ nb\rightarrow m c \succ nd \& \\ ma\simeq nb \rightarrow m c \simeq nd \& \\ ma\prec nb \rightarrow m c \prec nd) \end{aligned}$$

    where \(\succ , \prec , \simeq \), generalize the concept of \(>, <, =\) respectively, from numbers to geometrical magnitudes.

  28. 28.

    p. 107. Translation in [180].

  29. 29.

    p. 107. Comment to Def. 5.

  30. 30.

    p. 5.

  31. 31.

    pp. 24–28

  32. 32.

    pp. 55–56.

  33. 33.

    pp. 1–4,

  34. 34.

    pp. 61–78.

  35. 35.

    p. 352.

  36. 36.

    p. 362.

  37. 37.

    p. 360.

  38. 38.

    p. 191.

  39. 39.

    pp. 191–192.

  40. 40.

    p. 194.

  41. 41.

    p. 175.

  42. 42.

    p. 154.

  43. 43.

    pp. 81–84.

  44. 44.

    pp. 81–84.

  45. 45.

    vol. 1, p. 226.

  46. 46.

    pp. 108–109.

  47. 47.

    p. 1.

  48. 48.

    p. 1.

  49. 49.

    p. 51.

  50. 50.

    Preface. Translation in [77].

  51. 51.

    Letter of October 9th 1580. There is a reference to this experience also in [59], p. 29 r.

  52. 52.

    Letter of December 18th, 1580.

  53. 53.

    pp. 1808–115.

  54. 54.

    p. 236. Transcribed in [150], vol. IV, pp. 387–398.

  55. 55.

    p. 25v.

  56. 56.

    p. 78v–79r. Translation in [77].

  57. 57.

    pp. 5–6.

  58. 58.

    Uniformly heavy body is defined by Tartaglia as a bodies that is sufficiently compact to suffer only a negligible air resistance. In this way the heaviness of a body, intended not in the absolute sense but as characterized by a downward tendency, remains uniform (in time) along the trajectory. Indeed a science of motion can only exist if inessential accidents are not accounted for, such as the irregular variation of air resistance. However, Tartaglia did not limit himself to a definition. He also stated that uniformly heavy bodies exist (this is an implicit supposition) and furnishes the characteristics they should have: made up of matter that is sufficiently compact (such as stone or iron) and have a spherical shape [243], p. 1r.

  59. 59.

    p. 3r.

  60. 60.

    p. 3v. Translation in [77].

  61. 61.

    pp. 557.

  62. 62.

    pp. 78–79.

  63. 63.

    pp. 3r–3v. Translation in [77].

  64. 64.

    pp. 80–81.

  65. 65.

    pp. 11r–11v.

  66. 66.

    p. 16r.

  67. 67.

    pp. 18v–19r.

  68. 68.

    p. 28v.

  69. 69.

    p. 92.

  70. 70.

    pp. 247–248.

  71. 71.

    p. 238.

  72. 72.

    p. 552.

  73. 73.

    p. 316.

  74. 74.

    p. 165.

  75. 75.

    p. 495.

  76. 76.

    p. 482.

  77. 77.

    p. 7.

  78. 78.

    In music the sequence of three numbers \(n_1, n_2, n_3\) is called harmonic if \(n_2\) is the harmonic mean of \(n_1\) and \(n_3\), that is, if \(\frac{1}{n_2}= \frac{1}{2}\left( \frac{1}{n_1}+\frac{1}{n_3} \right) \).

  79. 79.

    p. 547.

  80. 80.

    p. 481.

  81. 81.

    487.

  82. 82.

    Many ancient scholars referred to different account about Pythagoras’ attributions. Among them Nicomachus (first century AD), Theon of Smyrna (second century AD), Boethius (c 480–524) [74], pp. 172–173. Most of the observations reported by them, as the tale of the hammers, could not have been made, and Pythagoras’s discoveries sound like a legend. What is however valuable about ancient witnesses is the importance of ratios and arithmetics for music.

  83. 83.

    pp. 103–105.

  84. 84.

    Here there are problems of interpretation. Indeed the variation of volume could be due either to variation in diameter and/or in length. But the pitches of pipes do not depend on the diameter.

  85. 85.

    p. 145.

  86. 86.

    p. 147.

  87. 87.

    De intervalli musicis, pp. 277–283.

  88. 88.

    p. 283. Translation in [191], adapted.

  89. 89.

    It might be thought that he had been influenced by the Problemata of Aristotle , where Problem 35b of Book 19 made considerations on the frequency of vibration of strings [12], vol. 1, 920b.

  90. 90.

    pp. 76–77.

  91. 91.

    p. 283. Translation in [191].

  92. 92.

    p. 26.

  93. 93.

    pp. 157–158.

  94. 94.

    vol. 1, pp. 54–55.

  95. 95.

    vol. 1, p. 249. Translation in [249], adapted.

  96. 96.

    vol. 1, p. 92.

  97. 97.

    pp. 126–127.

  98. 98.

    vol. 1, p. 160.

  99. 99.

    vol. 4, pp. 206–207. Translation in [48], adapted.

  100. 100.

    p. 22. Clifford Ambrose Truesdell states that Fracastoro’s writings do not read like a work of an originator, and conjecture that future studies of medieval sources could reveal a considerable knowledge of acoustics. Moreover, Truesdell claims that Fracastoro had the idea that sound was a vibratory motion of definite frequency [249], pp. 22–23; but on this point Truesdell most probably attributed too much to Fracastoro.

  101. 101.

    vol. 4, pp. 206. Translation in [48].

  102. 102.

    This is a result of the modern theory of vibrating strings, considering that some form of damping is always present.

  103. 103.

    Second partie. Livre troisiesme des instrumens à chordes, pp. 123–125.

  104. 104.

    Second partie. Livre troisiesme des instrumens à chordes, p. 123. Mersenne’s rules translated into modern algebraic language are equivalent to the relation:

    $$ f\propto \frac{1}{l} \sqrt{\frac{F}{A}}$$

    where f the frequency of vibration, L the length, F the force of traction (the weight attached to the string according to Mersenne language), and A the cross-section area of the string. The ratio F / A is the stress (modern meaning) of the string. Note that the frequency is defined less a constant of proportionality.

  105. 105.

    Second partie. Livre troisiesme des instrumens à chordes, pp. 123–125.

  106. 106.

    Using the rule of the parallelogram of forces it is not difficult to show – this is true for a modern student but was also true for Mersenne’s contemporaries – that for strings of equal lengths and forces of tension, the transverse force necessary to display their middle points is directly proportional to the displacement (actually only when angles in a and b (see Fig. 3.7) can be assimilated to sines).

  107. 107.

    part 1, Livre troisieme du mouvement, p. 157.

  108. 108.

    part 1, Livre troisieme du mouvement, p. 158.

  109. 109.

    Premiere partie, Livre troisieme du mouvement, p. 158.

  110. 110.

    p. 145. Translation in [74].

  111. 111.

    1 pound is 16 ounces.

  112. 112.

    Second partie. Livre troisiesme des instrumens à chordes, p. 123.

  113. 113.

    p. 429.

  114. 114.

    p. 187.

  115. 115.

    Premiere partie. Livre troisieme du mouvement, p. 169.

  116. 116.

    Premiere partie. Livre troisieme du mouvement, p. 172.

  117. 117.

    XIX, 918b.

  118. 118.

    Second partie. Livre quatriesme des instrumens, p. 210.

  119. 119.

    p. 129

  120. 120.

    pp. 118–120

  121. 121.

    p. 299.

  122. 122.

    p. 349.

  123. 123.

    p. 351–352.

  124. 124.

    Second partie. Livre sexieme des orgues, p. 362.

  125. 125.

    pp. 205–206.

  126. 126.

    pp. 119–140.

  127. 127.

    p. 3.

  128. 128.

    p. 120.

  129. 129.

    Grosseteste also wrote some technical works on optics, such as De iride, De lineis angulis et figuris.

  130. 130.

    p. 214.

  131. 131.

    pp. 1–167.

  132. 132.

    pp. 16–17.

  133. 133.

    p. 61. Translation in [257].

  134. 134.

    pp. 61–65. Translation in [257].

  135. 135.

    p. 63. Translation in [257].

  136. 136.

    p. 66. Translation in [257].

  137. 137.

    p. 66.

  138. 138.

    p. 91.

  139. 139.

    The previous description is nearly verbatim derived from [235], pp. 186–187.

  140. 140.

    pp. 92, 93. Translation in [257].

  141. 141.

    pp. 215–218.

  142. 142.

    p. 94.

  143. 143.

    pp. 323–330.

  144. 144.

    p. 5. Translation in [135].

  145. 145.

    Not numbered page. Summary of part III, Chap. 32.

  146. 146.

    p. 6.

  147. 147.

    p. 80.

  148. 148.

    pp. 19–20.

  149. 149.

    p 56.

  150. 150.

    p. 43. Translation in [135].

  151. 151.

    p. 45. Translation in [135].

  152. 152.

    p. 48. Translation in [135].

  153. 153.

    pp. 171–172.

  154. 154.

    p. 180.

  155. 155.

    p. 193. Translation in [135].

  156. 156.

    p. 191.

  157. 157.

    p. 213.

  158. 158.

    p. 196. Translation in [135].

  159. 159.

    pp. 196–197.

  160. 160.

    p. 199.

  161. 161.

    p. 349.

  162. 162.

    p. 3.

  163. 163.

    p. 53.

  164. 164.

    p. 56.

  165. 165.

    p. 79.

  166. 166.

    vol. 1, p. 376.

  167. 167.

    vol. 15, p. 146.

  168. 168.

    p. 12, note 2.

  169. 169.

    p. 197.

  170. 170.

    vol. 1, p. 356.

  171. 171.

    p. 74.

  172. 172.

    vol. 3, pp. 15–16.

  173. 173.

    vol. 3, p. 16; p. 29.

  174. 174.

    vol. 1, pp. 355–356.

  175. 175.

    A longer, modern, list could also include, before Boyle : Bacon , Beeckman, Galileo , Mersenne , Charlton, Digby, More , Hobbes , Cordemoy, La Forge, Malebranche, Regis, Rohault, Huygens , and Spinoza . After Boyle , Locke , Hooke , Leibniz , and Newton [119], p. 71.

  176. 176.

    p. 10.

  177. 177.

    Aristotele Physica, 1.4, 187b; Aristotele De generatione et corruptione, 327b.

  178. 178.

    pp. 155–159.

  179. 179.

    p. 570.

  180. 180.

    vol. 1, pp. 102–172.

  181. 181.

    vol. 1, p. 151.

  182. 182.

    vol. 1, p. 154. Translation in [169].

  183. 183.

    vol. 1, p. 157. Translation in [169].

  184. 184.

    p. 33.

  185. 185.

    vol. 1, p. 276. Translation in [159].

  186. 186.

    vol 1, p 268.

  187. 187.

    vol. 1, p. 366. Translation in [159].

  188. 188.

    vol 1, p 372 cols 1,2

  189. 189.

    p. 157.

  190. 190.

    vol. 1, pp. 229–282.

  191. 191.

    pp. 65–66.

  192. 192.

    vol 3, pp. 478–563.

  193. 193.

    vol 3, p. 497. Translation in [106].

  194. 194.

    vol 3, p 495.

  195. 195.

    p. 174.

  196. 196.

    p. 157.

  197. 197.

    vol 1, p 338. Translation in [106].

  198. 198.

    vol. 4, p. 41

  199. 199.

    p. 119.

  200. 200.

    vol. 1, p. 244.

  201. 201.

    vol. 4. pp. 52–55. See also [107].

  202. 202.

    p. 169.

  203. 203.

    p. 11.

  204. 204.

    pp. 80–81.

  205. 205.

    p. 88.

References

  1. Abdounur OJ (2001) Ratios and music in the late Middle Ages: A preliminary survey. Max Planck Institute for the History of Science, preprint 181

    Google Scholar 

  2. Abdounur OJ (2015) The emergence of the idea of irrationality in Renaissance theoretical music contexts. Mathematical Journal of Interdisciplinary Sciences 3(2):155–172

    Google Scholar 

  3. Alberti LB (15th century) Ex ludis rerum mathematicarum. MS. Typ 422.2. The Houghton Library. The Harvard University Press, Cambridge–MA. http://pds.lib.harvard.edu/pds/view/8282412?op=n&n=1&treeaction=expand

  4. Alhazen (1572) Alhazeni arabis libri septem. In: Risner F (ed) (1572) Opticae Thesaurus: Alhazeni Arabis libri septem nunc primum editi, eiusdem liber De crepusculis et nubium asensionibus. Item Vitellonis Thuringopoloni libri X. Episcopios, Basel

    Google Scholar 

  5. Anstein PR (2000) The philosophy of Robert Boyle. Routledge, London

    Google Scholar 

  6. Aquino (d’) T (2004) Commento alla Fisica di Aristotele: Libri 1–3. Latin and Italian text. PDUL, Bologna

    Google Scholar 

  7. Archimedes (1543) Opera Archimedis Syracusani philosophi et mathematici ingeniosissimi. Edited by Niccolò Tartaglia. Ruffinelli, Venice

    Google Scholar 

  8. Archimedes (1565) Archimedis De iis quae vehuntur in aqua libri duo. Edited by Federico Commandino. Ex Offcina Benacii, Bologna

    Google Scholar 

  9. Arend G (1988) Die Mechanik des Niccolo Tartaglia im Kontext der zeitgenšssischen Erkenntnis und Wissenschaftstheorie. Institut für Geschichte der Naturwissenschaften, Münich

    Google Scholar 

  10. Aristotle (1525) Conversio mechanicarum quaestionum Aristotelis cum figuris et annotationibus quibusdam. In: Leonico Tomeo N (1525) Opuscula nuper in lucem aedita quorum nomina proxima habentur pagella. Vitali, Venice

    Google Scholar 

  11. Aristotle (1955) Mechanical problems. In: Hett WS (ed) (1955) Aristotle minor works. Heinemann, Cambridge

    Google Scholar 

  12. Aristotle (2011) Problems. Books 1-19. Translated into English by Mayhew R (ed). Harvard University Press, Cambridge

    Google Scholar 

  13. Aristoxenus (1902) The harmonics of Aristoxenus. Edited and translated into English by Macran HS. Clarendon Press, Oxford

    Google Scholar 

  14. Aristoxenus (1954) Aristoxeni Elementa harmonica. Edited and translated into Italian by Da Rios R. Publicae Officinae polygraphicae, Rome

    Google Scholar 

  15. Bacon R (1614) Perspectiva in qua quae ab aliis fuse traduntur, succincte, nervose & ita pertractantur, ut omnium intellectui facile pateant. Richter, Frankfurt

    Google Scholar 

  16. Barbour JM (1951) Tuning and temperament: a historical survey. Michigan State College Press, East Lansing

    Google Scholar 

  17. Becchi A, Bertoloni Meli D, Gamba E (eds) (2103) Guidobaldo del Monte (1545–1607) Theory and practice of the mathematical disciplines from Urbino to Europe. Edition Open Access, Berlin

    Google Scholar 

  18. Beeckman I (1939) Journal tenu par Isaac Beeckman de 1604 à 1634 (4 vols). Nijhoff, The Haye

    Google Scholar 

  19. Benedetti GB (1553) Resolutio omnium Euclidis problematum aliorumque ad hoc necessario inventorum una tantummodo circini data apertura. Cesano, Venice

    Google Scholar 

  20. Benedetti GB (1554) Demonstratio proportionum motuum localium. Bartholomaeum Caesanum, Venice. In: Maccagni C (ed) (1967) Le speculazioni giovanili "de motu" di Giovanni Battista Benedetti. Domus Galileiana, Pisa, pp. 65–84

    Google Scholar 

  21. Benedetti GB (1585) Diversarum speculationum mathematicarum et physicarum liber. Heirs Bevilacqua, Turin

    Google Scholar 

  22. Bennett JA (1986) The mechanics’ philosophy and the mechanical philosophy. History of Science 24:1–27

    Google Scholar 

  23. Bertoloni Meli D (1992) Guidobaldo dal Monte and the Archimedean revival. Nuncius 7(1):3–34

    Google Scholar 

  24. Biagioli M (1989) The social status of Italian mathematicians. History of Science 27:41–95

    Google Scholar 

  25. Boschiero L (2002) Natural philosophizing inside the late seventeenth-century tuscan court. The British Journal for the History of Science 35(4):383–410

    Google Scholar 

  26. Boschiero L (2010) Translation, experimentation and the spring of air: Richard Waller’s essayes of natural experiment. Notes and Records of the Royal Society of London 64(1):67–83

    Google Scholar 

  27. Boyle R (1725) The philosophical work of the honourable Robert Boyle (3 vols). Edited and summarized by Shaw P. Innys W & J, London

    Google Scholar 

  28. Boyle R (1772) The philosophical work of the honourable Robert Boyle (6 vols). Johnston et al, London

    Google Scholar 

  29. Cajori F (1928) A history of mathematical notations (2 vols). The Open Court Company, London

    Google Scholar 

  30. Capecchi D (2011) Weight as active or passive principle in the Latin and Arabic scientia de ponderibus. Organon 42:83–100

    Google Scholar 

  31. Capecchi D (2012) History of virtual work laws. Birkhäuser, Milan

    Google Scholar 

  32. Capecchi D (2014) The problem of motion of bodies. Springer, Dordrecht

    Google Scholar 

  33. Carman CH (2014) Leon Battista Alberti and Nicholas Cusanus. Ashgate Publishing Company, Burlington

    Google Scholar 

  34. Caspar M (1993) Kepler. Translated into English by Hellman CD. Dover, New York

    Google Scholar 

  35. Cassirer E (1964) The individual and cosmos in Renaissance philosophy. Translated into English by Domandi M. Harper & Row, New York

    Google Scholar 

  36. Caverni R (1891-1900) Storia del metodo sperimentale in Italia (6 vols). Civelli, Florence

    Google Scholar 

  37. Cellucci C (1993) From closed to open systems. Proceedings of the 15th International Wittegenstein Symposium, Wien, pp. 206–220

    Google Scholar 

  38. Chalmers GK (1936) Three terms of the corpuscularian philosophy. Modern Philology 33(3):243–260

    Google Scholar 

  39. Chalmers GK (1937) The lodestone and the understanding of matter in seventeenth century England. Philosophy of Science 4(1):75–95

    Google Scholar 

  40. Charleton W (1654) Physiologia Epicuro-Gassendo-Charltoniana, or a fabrick of science natural upon the hypothesis of atoms. Newcomb, London

    Google Scholar 

  41. Chen-Morris RD (2001) Optics, imagination, and the construction of scientific observation in Kepler’s new science. The Monist 84(2):453–486

    Google Scholar 

  42. Chen-Morris RD (2005) Shadows of instruction: Optics and classical authorities in Kepler’s ‘Somnium’. Journal of the History of Ideas 66(2):223–243

    Google Scholar 

  43. Cohelo V (1992) Music and science in the age of Galileo. Springer, Dordrecth

    Google Scholar 

  44. Clagett M (ed) (1956) The liber de Motu of Gerard of Brussels and the origin of kinematics in the West. Osiris 12:73–175

    Google Scholar 

  45. Clagett M (1959) The science of mechanics in the Middle Ages. The University of Wisconsin Press, Madison

    Google Scholar 

  46. Clagett M (1964) Archimedes in the Middle Ages. The University of Wisconsin Press, Madison

    Google Scholar 

  47. Clericuzio A (2000) Elements, principles and corpuscles. Springer, Dordrecht

    Google Scholar 

  48. Cohen HF (1984) Quantifying music. The science of music at the first stage of the scientific revolution 1580-1650. Reidel, Dordrecht

    Google Scholar 

  49. Cohen HF (1987) Simon Stevin’s division of the octave. Annals of Science 44:471–488

    Google Scholar 

  50. Commandino F (1565) Liber de centro gravitatis solidorum. Ex Officina Benacci, Bologna

    Google Scholar 

  51. Copenhaver BP (1992) Did science have a Renaissance? Isis 83(3):387–407

    Google Scholar 

  52. Cunningham A (2000) The identity of natural philosophy. A response to Edward Grant. Early Science and Medicine 5(3):259–278

    Google Scholar 

  53. Cusanus N (1450) Idiota de mente. In: Hopkins J (1996) Nicholas of Cusa on wisdom and knowledge. Banning, Minneapolis

    Google Scholar 

  54. Dal Monte G (1577) Mechanicorum liber. Concordia, Pesaro

    Google Scholar 

  55. Dal Monte G (1581) Le mechaniche dell’illustriss. sig. Guido Ubaldo de’ marchesi del Monte. Tradotte in volgare da Filippo Pigafetta. Deuchino, Venice

    Google Scholar 

  56. Dal Monte G (1588) In duos Archimedis aequeponderantium libros paraphrasis. Concordia, Pesaro

    Google Scholar 

  57. Dal Monte G (ca 1587–1592) Meditantiunculae Guidi Ubaldi e marchionibus Montis Santae Mariae de rebus mathematicis. Bibliothque Nationale de France, Paris. Manuscript Lat. 10246

    Google Scholar 

  58. Dal Monte G (1600) Perspective libri sex. Concordia, Pesaro

    Google Scholar 

  59. Dal Monte G (1615) Le mechaniche dell’illustriss. sig. Guido Ubaldo de’ marchesi del Monte. Tradotte in volgare da Filippo Pigafetta. Deuchino, Venice

    Google Scholar 

  60. Damerow P, Freudenthal G, Mclaughlin P, Renn J (1991), Exploring the limits of preclassical mechanics. Springer, New York

    Google Scholar 

  61. De Haan DB (1884) De Spiegheling der Singconst van Simon Stevin. Verslagen en mededelingen der Koninklijke Akademie van Wetenschappen (Afdeeling Natuurkunde) 2(20):102–195

    Google Scholar 

  62. De Pace A (1993) Le matematiche e il mondo. Francoangeli, Milan

    Google Scholar 

  63. Dear P (1995) Discipline & experience. The University of Chicago Press, Chicago

    Google Scholar 

  64. Della Porta GB (1593) De refractione optices parte. Salviani, Naples

    Google Scholar 

  65. Della Porta GB (1611) Della magia naturale del sig. Gio. Battista Della Porta linceo napolitano. Libri 20. Carlino & Vitale, Naples

    Google Scholar 

  66. De Nemore J (1565) Jordani opusculum de ponderositate. Tartaglia N (ed). Curtio Troiano, Venice

    Google Scholar 

  67. Descartes R (1637) La dioptrique. In: Descartes R (1668) Discours sur la methode, plus la dioptrique et les meteores. Girard, Paris, pp. 1–153 (new numeration)

    Google Scholar 

  68. Descartes R (1644) Principia philosophiae. Elzevir, Amsterdam

    Google Scholar 

  69. Descartes R (1664) Le monde ou traité de la lumiere. Girard, Paris

    Google Scholar 

  70. Descartes R (1668) Les principes de la philosophie, écrits en latin par René Descartes. Girard, Paris

    Google Scholar 

  71. Descartes R (1964–1974) Oeuvres de Descartes; nouvelle édition complétée (1896-1913) (11 vols). Adam C, Tannery P (eds). Vrin, Paris

    Google Scholar 

  72. Dijksterhuis EJ (1961) The mechanization of the world picture. Translated into English by C. Dikshoorn. Oxford University Press, New York

    Google Scholar 

  73. Donna D (2008) Induzione, enumerazione e modelli della spiegazione scientifica. Il metodo di Descartes. PhD thesis. University of Bologna

    Google Scholar 

  74. Dostrovsky S (1975) Early vibration theory: Physics and music in the seventeenth century. Archive for History of Exact Sciences 14(3):169–218

    Google Scholar 

  75. Drake S (1973) Velocity and Eudoxian proportion theory (Galileo gleanings XXIII). Physis 15:49–64

    Google Scholar 

  76. Drake S (1993) Music and philosophy in the early modern science. In: Coelho V (1992) Music and science in the age of Galileo. Springer, Dordrecht, pp. 3–16

    Google Scholar 

  77. Drake S, Drabkin IE (1969) Mechanics in the sixteenth-century Italy. University of Wisconsin Press, Madison

    Google Scholar 

  78. Duhem P (1905–1906) Les origines de la statique (2 vols). Hermann, Paris

    Google Scholar 

  79. Duhem P (1913–1959) Le systme du monde, histoire des doctrines cosmologiques de Platon à Copernic (10 vols). Hermann, Paris

    Google Scholar 

  80. Dupré S (2008) Inside the ‘camera obscura’: Kepler’s experiment and theory of optical imagery. Early Science and Medicine 13(3):219–244

    Google Scholar 

  81. Dupré S (2012) Kepler’s optics without hypotheses. Synthese 185(3):501–525

    Google Scholar 

  82. Edgerton SY (2009) The mirror, the window, and the telescope. Cornell University Press, Ithaca

    Google Scholar 

  83. Edwards M (2007) Aristotelism, Descartes and Hobbes. The Historical Journal 50(2):449–464

    Google Scholar 

  84. Elazar M (2011) Honoré Fabri and the concept of impetus: A bridge between conceptual frameworks. Springer, Dordrecht

    Google Scholar 

  85. Elkins J (1992) Renaissance perspectives. Journal of History of Ideas 53(2):209–230

    Google Scholar 

  86. Euclides (1573) La prospettiva di Euclide. Translated into Italian by Danti I. Giunti, Florence

    Google Scholar 

  87. Fabri H (1646) Tractatus physicus de motu locali. Champion, Lyon

    Google Scholar 

  88. Favaro A (1887) Di Giovanni Tarde e di una sua visita a Galileo dal 12 al 15 novembre 1614. Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche 20:345–371

    Google Scholar 

  89. Favaro A (1900) Due lettere inedite di Guidobaldo del Monte a Giacomo Contarini. Ferrari, Venice

    Google Scholar 

  90. Ficino M (1482) Theologia Platonica de immortalitate animae. In: Hankins J (ed) (2001–2006) Platonic Theology. English translation by Allen MJB. Harvard University Press,

    Google Scholar 

  91. Fontana F (1646) Novae coelestium terrestriumq[ue] rerum observationes: et fortasse hactenus non vulgatae. Gaffarum, Naples

    Google Scholar 

  92. Frank M (2007). Das erste Buch der In duos Archimedis aequeponderantium libros paraphrasis von Guidobaldo dal Monte. Schriftliche Hausarbeit, Ludwig-Maximilians-UniversitŠt, Munich

    Google Scholar 

  93. Gal O, Chen-Morris RD (2010) Baroque optics and the disappearance of the observer: From Kepler’s optics to Descartes’ doubt. Journal of the History of Ideas 71(2):191–217

    Google Scholar 

  94. Gal O, Chen-Morris RD (2012) Nature’s drawing: Problems and resolutions in the mathematization of motion. Sinthese 185(3):429–466

    Google Scholar 

  95. Galilei G (1590) De motu antiquiora. In: Favaro A (ed) (1890-1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol 1, pp. 243–419

    Google Scholar 

  96. Galilei G (1605) Il trattato della sfera, ovvero cosmografia (1638). In: Favaro A (ed) (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol 2, pp. 203–255

    Google Scholar 

  97. Galilei G (1638) Discorsi e dimostrazioni matematiche sopra due nuove scienze. In: Favaro A (ed) (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol. 8, pp. 39–362

    Google Scholar 

  98. Galilei V (1581) Dialogo di Vincentio Galilei nobile fiorentino della musica antica, et della moderna. Marescotti, Florence

    Google Scholar 

  99. Galileo V (1589) Discorso di Vincentio Galileo nobile fiorentino intorno all’opere di messer Gioseffo Zarlino da Chioggia. Marescotti, Florence

    Google Scholar 

  100. Gamba E (1998) Guidobaldo dal Monte, matematico e ingegnere. In: Fiocca A (ed) (1988) Giambattista Aleotti e gli ingegneri del Rinascimento. Olschki, Florence, pp. 341–351

    Google Scholar 

  101. Gamba E, Montebelli V (1988) Le scienze a Urbino nel tardo Rinascimento. Quattro Venti, Urbino

    Google Scholar 

  102. Garber D (2001) Descartes embodied. Cambridge University Press, Cambridge

    Google Scholar 

  103. Garber D, Roux S (eds) (2013) The mechanization of natural philosophy. Springer, Dordrecht

    Google Scholar 

  104. Gassendi P (1653) Institutio astronomica (1647). Flesher, London

    Google Scholar 

  105. Gassendi P (1658) Petri Gassendi Opera Omnia in sex tomos divisa (6 vols). Anisson & Devenet, London

    Google Scholar 

  106. Gassendi P (1972) The selected work of Pierre Gassendi. Edited and translated into English by Brush CB. Johnson Reprint Corporation, New York

    Google Scholar 

  107. Gaukroger S, Schuster J (2002) The hydrostatic paradox and the origins of Cartesian dynamics. Studies in History and Philosophy of Sciences 33(3):535–572

    Google Scholar 

  108. Gaukroger S (2002) Descartes’ system of natural philosophy. Cambridge University Press, New York

    Google Scholar 

  109. Gerardus de Brussel (1956) Liber magistri Gerardus de Brussel de motu. In: M. Clagett (ed) (1956) The liber de motu of Gerard of Brussels and the origin of kinematics in the West. Osiris 12:73–175

    Google Scholar 

  110. Giusti E (1993) Euclides reformatus. La teoria delle proporzioni nella scuola galileiana. Bollati Boringhieri, Turin

    Google Scholar 

  111. Glasner R (2009) Averroes’ physics. Oxford University Press, Oxford

    Google Scholar 

  112. Goes FJ (2013) The eye in history. Jaypee Brothers Medical Publishers, New Delhi

    Google Scholar 

  113. Goldman DP (1988) Nicholas Cusanus’ contribution to music theory. Rivista Internazionale di musica sacra 10(3–4):308–338

    Google Scholar 

  114. Gozza P (1995) Una matematica media gesuita: La musica di Descartes. In: Baldini U (1995) (ed) Christoph Clavius e l’attività scientifica dei gesuiti nell’età di Galileo. Bulzoni, Rome, pp. 171–188

    Google Scholar 

  115. Grant E, Murdoch JE (eds) (1987) Mathematics and its applications to science and natural philosophy in the Middle Ages. Cambridge University Press, Cambridge

    Google Scholar 

  116. Grattan-Guinnes I (1996) Numbers, magnitudes, ratios, and proportions in Euclid’s Elements: How did he handle them? Historia Mathematica 23:335–275

    Google Scholar 

  117. Gudin P (1635) Dissertatio phisico-mathematica de motu terrae, ex mutatione centri gravitatis ipsius (1622). In: Gudin P (1635) De centro gravitatis trium specierum quantitatis continuae. Gelbhaar G, Vienna

    Google Scholar 

  118. Harris SJ (1996) Confession-building, long-distance networks, and the organization of Jesuit science. Jesuits and the Knowledge of Nature. Early Science and Medicine 1(3):287–318

    Google Scholar 

  119. Hattab H (2011) The mechanical philosophy. In: Clarke DM, Wilson C (eds) (2011) The Oxford handbook of philosophy in early modern Europe. Oxford University Press, New York

    Google Scholar 

  120. Henninger-Voss M (2000) Working machines and noble mechanics: Guidobaldo del Monte and the translation of knowledge. Isis 91(2):233–259

    Google Scholar 

  121. Henry J (1982) Atomism and eschatology: Catholicism and natural philosophy in the interregnum. The British Journal for the History of Science 15(3):211–239

    Google Scholar 

  122. Høirup J (1992) Archimedism, not Platonism: on a malleabile ideology of Renaissance mathematicians (1400-1600), and on its role in the formation of seventeenth-century philosopher of science. In: Dollo C (ed) (1992) Archimede. Mito, tradizione, scienza. Olschki, Florence, pp. 81–110

    Google Scholar 

  123. Holmes FL (1987) Scientific writing and scientific discovery. Isis 78(2):220–235

    Google Scholar 

  124. Houstoun RA (1922) The law of refraction. Science Progress in the Twentieth Century (1919–1933) 16(63):397–407

    Google Scholar 

  125. Høyrup J (1994) In measure, number and weight. State University of New York Press, Albany (NY)

    Google Scholar 

  126. Jansson L (2013) Newton’s "satis est": A new explanatory role for laws. Studies in History and Philosophy of Science 44:553–562

    Google Scholar 

  127. Javelli GC (1519) Solutiones rationum animi mortatiltatem probantium. In: Pomponazzi P (1525) Tractatus acutissimi, utillimi et mere peripatetici. Scotto, Venice

    Google Scholar 

  128. Keller AG (1976). Mathematicians, mechanics and experimental machines in northern Italy in the sixteenth century. In Crosland M (ed) (1976) The emergence of science in western europe. Science History Publications, New York, pp. 15–34

    Google Scholar 

  129. Kepler J (1604) Ad Vitellionem paralipomena, quibus astronomiae pars optica traditur. Marnium & Aubrium heirs, Frankfurt

    Google Scholar 

  130. Kepler J (1609) Astronomia nova, seu physica coelestis, tradita commentariis de motibus stellae Martis. Voegelin, Heidelberg

    Google Scholar 

  131. Kepler J (1611) Dioptrice. David, Augsburg

    Google Scholar 

  132. Kepler J (1619) Harmonices mundi. Plancus, Linz

    Google Scholar 

  133. Kepler J (1937–2009) Johannes Kepler Gesammelte Werke (23 vols). Edited by Caspar M, Hammer, Dyck W. Beck, Munich

    Google Scholar 

  134. Kepler J (1992) New astronomy. Translated into English by Donauhue WH. Cambridge University Press, Cambridge

    Google Scholar 

  135. Kepler J (2000) Optics. Paralipomena to Witelo & Optical part of astronomy. Translated into English by Donahue WH. Green Lion Press, Santa Fe

    Google Scholar 

  136. Kessler E (1998) Metaphysics or empirical science? The two faces of Aristotelian natural philosophy in the sixteenth century. In: Renaissance readings of the Corpus Aristotelicum. Proceeding of the Conference held in Copenahgen 23-25 April 1998. pp. 79–101

    Google Scholar 

  137. Kircher A (1631) Ars magnesia. Zinck, Wüzburg

    Google Scholar 

  138. Knowles WE (1963) The place of Torricelli in the history of the barometer. Isis 54(1):11–28

    Google Scholar 

  139. Knowles Middleton WE (1969) L’expérience du mouvement. Jean-Baptiste Baliani, disciple et critique de Galilée by Serge Moscovici. Isis 60(1):120–121

    Google Scholar 

  140. Koyré A (1950) L’apport scientifique de la Renaissance. Revue de Synthse 67(1):29–50

    Google Scholar 

  141. Koyré A (1953) An experiment in measurement. Proceedings of the American Philosophical Society 97(2):222–237

    Google Scholar 

  142. Koyré A (1996) Études Galiléennes. Hermann, Paris

    Google Scholar 

  143. Kristeller PO (1939) Florentine Platonism and its relations with humanism and scholasticism. Church History 8:201–211

    Google Scholar 

  144. Kristeller PO (1964) Eight philosophers of the Italian Renaissance. Stanford University Press, Stanford

    Google Scholar 

  145. Kristeller PO (1988) Humanism. In: Schmitt CB, Skinner Q (eds) (1998) The Cambridge history of Renaissance philosophy. Cambridge University Press, Cambridge, pp. 113–138

    Google Scholar 

  146. Laird WR (1986) The scope of Renaissance mechanics. Osiris 2:43–68

    Google Scholar 

  147. Laird WR (2000) The unfinished mechanics of Giuseppe Moletti. University of Toronto Press, Toronto

    Google Scholar 

  148. Laudan L (1968) Theories of scientific method from Plato to Mach. History of Science 7:1–63

    Article  Google Scholar 

  149. Leibniz GW (1994) La reforme de la dynamique. Fichant M (ed). Vrin, Paris

    Google Scholar 

  150. Libri G (1838–1841) Histoire des sciences mathématiques en Italie (4 vols). Renouard, Paris

    Google Scholar 

  151. Lindberg DC (1970) A reconsideration of Roger Bacon’s theory of pinhole images. Archive for History of Exact Sciences 6(3):214–223

    Google Scholar 

  152. Lindberg DC (1971) Lines of influence in thirteenth-century optics: Bacon, Witelo, and Pecham. Speculum, 46(1):66–83

    Google Scholar 

  153. Lindberg DC (1976) Theories of vision from Al-Kindi to Kepler. The University of Chicago Press, Chicago

    Google Scholar 

  154. Lindberg DC (1982) On the applicability of mathematics to nature: Roger Bacon and his predecessors. The British Journal for the History of Science 15(1):3–25

    Google Scholar 

  155. Lindberg DC (1986) The genesis of Kepler’s theory of light: Light metapysics from Plotinus to Kepler. Osiris 2:4–42

    Google Scholar 

  156. Lohr CH (1988) The sixteenth-century transformation of the Aristotelian natural philosophy. In: Kessler E et al. (eds) (1988) Aristotelismus und Renaissance. In Memoriam Smith CB. Harrassowitz, Wiesbaden, pp. 88–99

    Google Scholar 

  157. Lohr CH (1991) The sixteenth-century transformation of the Aristotelian division of the speculative sciences. International Archives of the History of Ideas 124:49–58

    Google Scholar 

  158. Lohr CH (2008) Metaphysics. In: Skinner Q, Kessler E (eds) (2008) The Cambridge history of Renaissance philosophy. Cambridge University Press, Cambridge, pp. 537–638

    Google Scholar 

  159. Lolordo A (2007) Pierre Gassendi and the birth of early modern philosophy. Cambridge University Press, Cambridge

    Google Scholar 

  160. MacDonnel J (1989) Jesuit geometers. Vatican Observatory Foundation, Vatican City

    Google Scholar 

  161. Maffioli CS (2011) "La Ragione del vacuo": Why and how Galileo measured the resistance of vacuum. Galileiana 8:73–104

    Google Scholar 

  162. MacTutor history of mathematics archive. http://www-history.mcs.st-and.ac.uk

  163. Malet A (2010) Kepler legacy: telescopes and geometrical optics, 1611–1619. In: Van Helden A, Dupré S, Van Gent R, Zuidervaart H (eds) (2010) The origins of telescope. Knaw, Amsterdam, pp. 281–300

    Google Scholar 

  164. Manolova D (2014) Discourse of science and philosophy in the letters of Nikephoros Gregoras. PhD dissertation. Central European University, Budapest

    Google Scholar 

  165. Maraghini MP (2011) The role of the ‘abacus tradition’ for the economic and social development of the society: Evidence from Tuscany (Italy) between XIII and XVI century. Pecvnia: Revista de la Facultad de Ciencias Económicas y Empresariales, Universidad de León, http://revpubli.unileon.es/ojs/index.php/Pecvnia/article/view/602

  166. Martin C (2014) Subverting Aristotle. Johns Hopkins University Press, Baltimore

    Google Scholar 

  167. Mckirhan RD (1978) Aristotle’s subordinate sciences. The British Journal for the History of Science 11(2):197–220

    Google Scholar 

  168. Meinel C (1988) Early seventeenth-century atomism: Theory, epistemology, and the insufficiency of experiment. Isis 79(1):68–103

    Google Scholar 

  169. Melsen Van AG (2004) From atomos to atom: The history of the concept of atom. Dover Phoenix Editions, Mineola

    Google Scholar 

  170. Mersenne M (1636–1637) Harmonie universelle, contenant la théorie et la pratique de la musique (two parts). Ballard, Paris

    Google Scholar 

  171. Mersenne M (1644) Tractatus mechanicus theoricus et practicus. In: Mersenne M (1644) Cogitata physico mathematica. Bertier, Paris

    Google Scholar 

  172. Mersenne M (1945–1986) Correspondance du P. Marin Mersenne religieux minime (16 vols). De Waard C (editor from 1859). Presses Universitaires de France (Édition du Centre National de la Recherche Scientifique), Paris

    Google Scholar 

  173. Molaro P (2016) Francesco Fontana and the “astronomical” telescope. Proceedings of SISFA 2016, Naples (to appear)

    Google Scholar 

  174. Moody EA, Clagett M (1952) The medieval science of weights. University of Wisconsin Press, Madison

    Google Scholar 

  175. Montanari G (1667) Pensieri fisico-matematici. Manolessi, Bologna

    Google Scholar 

  176. Moscovici S (1960) Sur l’incertitude des rapports entre experience et théorie au 17\(^0\) Sicle. La loi de Baliani. Physis 2(1):14–43

    Google Scholar 

  177. Moscovici S (1965) Les développements historiques de la théorie galiléenne des marées. Revue d’Histoire des sciences et de leurs Applications 18:129–240

    Google Scholar 

  178. Moscovici S (1967) L’expérience du mouvement. Jean-Baptiste Baliani disciple et critique de Galilée. Hermann, Paris

    Google Scholar 

  179. Moscovici S (1973) Baliani e i gesuiti by Claudio Costantini. Annales. Histoire, Sciences Sociales 6:1527

    Google Scholar 

  180. Mueller I (1981) Philosophy of mathematics and deductive structure in Euclid’s Elements. MIT, Cambridge

    Google Scholar 

  181. Murschel A (1995) The structure and function of Ptolemy’s physical hypotheses of planetary motion. Journal for the History of Astronomy 26:33–61

    Google Scholar 

  182. Naylor RH (1990) Galileo’s method of analysis and synthesis. Isis 81(4):695–707

    Google Scholar 

  183. Naylor R (2003) Galileo, Copernicanism and the origins of the new science of motion. The British Journal for the History of Science 36(2):151–181

    Google Scholar 

  184. Naylor R (2007) Galileo’s tidal theory. Isis 98(1):1–22

    Google Scholar 

  185. Netz R (1999) The shaping of deduction in Greek mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  186. Neugebauer O (1975) A history of ancient mathematical astronomy (3 vols), Springer, Dordrecht

    Google Scholar 

  187. Newman WR (1996) The alchemical sources of Robert Boyle’s corpuscular philosophy. Annals of Science 53(6):567–585

    Google Scholar 

  188. Nonnoi G (1988) Il pelago d’aria. Bulzoni, Rome

    Google Scholar 

  189. Palisca CV (1954) Girolamo Mei: Mentor to the Florentine Camerata. 40(1):1–20

    Google Scholar 

  190. Palisca CV (1960) Girolamo Mei. Letters on ancient and modern music to Vincenzo Galilei and Giovanni Bardi. American Institute of Musicology, Rome

    Google Scholar 

  191. Palisca CV (1961) Scientific empiricism in musical thought. In: Rhys HH (ed) (1961) Seventeen science and the arts. Princeton University Press, Princeton, pp. 91–137

    Google Scholar 

  192. Palisca CV (1985) Humanism in Italian Renaissance. Musical thought. Yale University Press, New Haven

    Google Scholar 

  193. Palisca CV (1992) Was Galileo’s father an experimental scientist? In: Coeloho V (ed) (1992) Music and science in the age of Galileo. Springer, Dordrecht, pp. 143–152

    Google Scholar 

  194. Palmerino R (1999) Infinite degrees of speed: Marin Mersenne and the debate over Galileo’s law of free fall. Early Science and Medicine 4(4):269–328

    Google Scholar 

  195. Palmieri P (2007) Science and authority in Giacomo Zabarella. History of Science 45:404–426

    Google Scholar 

  196. Pappus Alessandrinus (1588) Mathematicae collectiones a Federico Commandino urbinate in latinum conversae. Concordia, Pesaro

    Google Scholar 

  197. Park K, Daston L (eds) (2008) Early modern science. The Cambridge History of Science, vol 3. Cambridge University Press, Cambridge

    Google Scholar 

  198. Pasnau R (2004) Form, substance, and mechanism. The Philosophical Review 113(1):31–88

    Google Scholar 

  199. Pecham J (1580) Perspectivae communis libri tres. Birckmann, Cologne

    Google Scholar 

  200. Pisano R, Capecchi D (2016) Tartaglia’s science of weights and mechanics in the sixteenth century. Springer, Dordrecht

    Google Scholar 

  201. Pomponazzi P (1516) Tractatus de immoralitate animae. da Rubiera, Bologna

    Google Scholar 

  202. Pomponazzi P (1525) Tractatus acutissimi, utillimi et mere peripatetici. Scoto, Venice

    Google Scholar 

  203. Pomponazzi P (1567) De naturalium effectuum admirandorum causis, seu de incantationibus liber. In: Pomponazzi P (1567) Opera. Ex officina Henricpetrina, Basel

    Google Scholar 

  204. Porta S (1553) De rerum naturalium principiis libri duo (1533). Fenario, Naples

    Google Scholar 

  205. Proclus D (1820) Hypothses et époques des plantes, de C. Ptolémée, et hypotyposes de Proclus Diadochus. Edited and translated into French by Halma N. Merlin, Paris

    Google Scholar 

  206. Ptolemy C (1898-1903) Sintaxis mathematica. In: Heiberg JL (ed) Claudii Ptolemaei opera quae extant omnia. Teubneri, Leipzig, vol. 1

    Google Scholar 

  207. Ptolemy (1907) Opera astronomica minore. In: Heiberg JL (ed) (1898–1907) Claudii Ptolamaei opera quae extant omnia (2 vols). Teubneri, Leipzig, vol. 2, pp- 69–145

    Google Scholar 

  208. Ptolemy C (1998) Ptolemy’s Almagest. Translated into English by Toomer GJ. Princeton University Press, Princeton

    Google Scholar 

  209. Ptolemy C (2000) Ptolemy Harmonics. Translated and commented by Solomon J. Brill, Leiden

    Google Scholar 

  210. Randall JH (1940) The development of scientific method in the school of Padua. Journal of the History of Ideas 1(2):177–206

    Google Scholar 

  211. Rankin A (2007) Becoming an expert practitioner: Court experimentalism and the medical skills of Anna of Saxony (1532–1585). Isis 98(1):23–53

    Google Scholar 

  212. Reif P (1969) The textbook tradition in natural philosophy, 1600–1650. Journal of the History of Ideas, 30(1):17–32

    Google Scholar 

  213. Ribe NM (1997) Cartesian optics and the mastery of nature. Isis 88(1): 42–61

    Google Scholar 

  214. Riccati V (1757) Opusculorum ad res physicas, & mathematicas pertinentium. Della Volpe, Bologna

    Google Scholar 

  215. Risner F (ed) (1572) Opticae Thesaurus: Alhazeni Arabis libri septem nunc primum editi, eiusdem liber De crepusculis et nubium asensionibus. item Vitellonis Thuringopoloni libri X. Episcopios, Basel

    Google Scholar 

  216. Rose PL, Drake S (1971) The pseudo-Aristotelian Questions of mechanics in Renaissance culture. Studies in the Renaissance 18:65–104

    Google Scholar 

  217. Rose PL (1974) Copernicus and Urbino: Remarks on Bernardino Baldi’s Vita di Niccolò Copernico (1588). Isis 21(3):387–389

    Google Scholar 

  218. Rossi G (2011) Le (almeno) tre “innovazioni” di Luca Pacioli. Atti II Incontro Internazionale 17/18/19 Giugno 2011 Sansepolcro - Perugia - Firenze. pp. 431–456

    Google Scholar 

  219. Santillana G (1963) The school of Padua and the emergence of modern science by John Herman Randall. Isis, 54(2):300–302

    Google Scholar 

  220. Sauveur M (1743) Systme général des intervals des sons, et son application à tous les systmes et à tout les instrumens de musique (1701). Mémoires de l’Académie Royal des sciences de Paris, pp. 299–366

    Google Scholar 

  221. Sauveur M (1739) Rapport des sons des cordes d’instruments de musique, aux fleches des cordes. Et nouvelle determination des sons fixes (1713). Mémoires de l’Académie Royal des sciences de Paris, pp. 324–350

    Google Scholar 

  222. Savelli R (1953) Giovan Battista Baliani e la natura della luce. Tipografia Compositori, Bologna

    Google Scholar 

  223. Schiaparelli GV (1875) Le sfere omocentriche di Eudosso, di Callippo e di Aristotele. Hoepli, Milan

    Google Scholar 

  224. Schmitt CB (1969) Experience and experiment: A comparison of Zabarella’s view with Galileo’s in De motu. Studies in the Renaissance 16:80–138

    Google Scholar 

  225. Schmitt CB (1973) Towards a reassessment of Renaissance Aristotelianism. History of Science 11(3):159–193

    Google Scholar 

  226. Schmitt CB (1983) Aristotle and the Renaissance. Harvard University Press, Cambridge

    Google Scholar 

  227. Sennert D (1641) Opera omnia. Academia Wittebergensi (3 vols), Paris

    Google Scholar 

  228. Shapiro AE (1989) Huygens’ ‘Traité de la lumiere’ and Newton’s ‘Opticks’: Pursuing and eschewing hypotheses. Notes and Records of the Royal society of London 43(2):223–247

    Google Scholar 

  229. Skulsky H (1968) Paduan epistemology and the doctrine of one mind. Journal of the History of Philosophy 6(4):341–361

    Google Scholar 

  230. Slowik E (1996) Perfect solidity: natural laws and the problem of matter in Descartes’ universe. History of Philosophy Quarterly 13(2):187–202

    Google Scholar 

  231. Smith AM (1981) Getting the big picture in perspective optics. Isis 72(4):568—589

    Google Scholar 

  232. Smith AM (1996) Ptolemy’s theory of visual perception: An English translation of the Optics with introduction and commentary. The American Philosophical Society, Philadelphia

    Google Scholar 

  233. Smith AM (2004) What is the history of Medieval optics really about? Proceeding of the American Philosophical Society 148(2):180–194

    Google Scholar 

  234. Smith R (2008) Optical reflection and mechanical rebound: The shift from analogy to axiomatization in the seventeenth century. The British Journal for the History of Science 41(2):187–207

    Google Scholar 

  235. Smith AM (2015) From sight to light. The University of Chicago Press, Chicago

    Google Scholar 

  236. Stevin S (1585) L’arithmétique de Simon Stevin de Bruges. Imprimerie de Christophle Plantin, Leiden

    Google Scholar 

  237. Stevin S (1605) Tomus quartus mathematicorum hypomnematum de statica. Ex officina Patii, Leiden

    Google Scholar 

  238. Straker S (1981) Tycho and the ‘Optical part of astronomy’: the genesis of Kepler theory of pinhole. Archive for History of Exact Sciences 24(4):267–293

    Google Scholar 

  239. Tartaglia N (1537) Nova scientia inventa da Nicolo Tartalea. Stabio, Venice

    Google Scholar 

  240. Tartaglia N (1543) L’Euclide megarense. Curtio Troiano, Venice

    Google Scholar 

  241. Tartaglia N (1546) Quesiti et inventioni diverse de Nicolo Tartalea Brisciano. Ruffinelli, Venice

    Google Scholar 

  242. Tartaglia N (1554) Quesiti et inventioni diverse de Nicolo Tartaglia di novo restampati con una gionta al sesto libro. Bascarini, Venice

    Google Scholar 

  243. Tartaglia N (1558) La Nova scientia de Nicolò Tartaglia con una gionta al terzo libro. Curtio Troiano, Venice

    Google Scholar 

  244. Tartaglia N (1569) Euclide megarense acutissimo philosopho (1543). Bariletto, Venice

    Google Scholar 

  245. Tartaglia N (1876) I sei scritti di matematica disfida di Lodovico Ferrari coi sei contro-cartelli in risposta di Niccolò Tartaglia. Giordani E (ed). Sabilimento litografico Ronchi, Tipografia degl’ingegneri, Milan

    Google Scholar 

  246. Tartaglia N (1998) La nueva ciencia. Martinez JR, Bravo JCG (eds). Trillas, Mexico

    Google Scholar 

  247. Tartaglia N (2013), Metallurgy, ballistics and epistemic instruments. The Nova scientia of Nicolò Tartaglia. A new edition by Valleriani M. Edition Open Access, Berlin

    Google Scholar 

  248. Toussant S (2002) Ficino, Archimedes and the celestial orbits. In: Allen MJB, Rees V, Daviers M (eds) (2002) Marsilio Ficino: his theology, his philosophy, his legacy. Brill, Leiden, pp. 307–326

    Google Scholar 

  249. Truesdell CA (1960) The rational mechanics of flexible or elastic bodies. In: Euler L (1911-) Leonhardi Euleri Opera omnia (in progress). Teubneri; [then] Fussli Turici; [then] BirkhŠuser, Basel, s 2, vol 11, part 2

    Google Scholar 

  250. Van Dyck M (2006). Gravitating toward stability: Guidobaldo’s Aristotelian-Archimedean synthesis. History of Science 44:373–407

    Google Scholar 

  251. Federici Vescovini G (2003) Le teorie della luce e della visione ottica dal IX al XV secolo. Morlacchi, Perugia

    Google Scholar 

  252. Viviani V (1674) Quinto libro degli Elementi di Euclide. Alla Condotta, Florence

    Google Scholar 

  253. Waljer DP (1967) Kepler’s celestial music. Journal of the Warburg and Courtauld Institutes 30:228–250

    Google Scholar 

  254. Witelo (1572) Vitellonis Thuringopoloni opticae libri decem. In: Risner F (ed) (1572) Opticae Thesaurus: Alhazeni Arabis libri septem nunc primum editi, eiusdem liber De crepusculis et nubium asensionibus. Item Vitellonis Thuringopoloni libri X. Episcopios, Basel

    Google Scholar 

  255. Witelo (1977) Witelonis perspectivae liber primus. Translated into English by Unguru S. The Polish Academy of Science Press, Wroclaw

    Google Scholar 

  256. Witelo (1983) Witelonis perspectivae liber quintus. Translated into English by Smith AM. The Polish Academy of Science Press, Wroclaw

    Google Scholar 

  257. Witelo (1991) Witelonis perspectivae liber secundus et liber tertius. Translated into English by Unguru S. The Polish Academy of Science Press, Wroclaw

    Google Scholar 

  258. Zouckermann R (1982) Poids de l’air et pression atmosphérique. Physis 24(2):133–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Capecchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Capecchi, D. (2018). New Forms of Natural Philosophy and Mixed Mathematics. In: The Path to Post-Galilean Epistemology. History of Mechanism and Machine Science, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-58310-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58310-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58309-9

  • Online ISBN: 978-3-319-58310-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics