From Sediment Movement to Morphodynamic Changes, Useful Information from the Modeling World to the Beach Management Practice

  • Isaac Azuz-AdeathEmail author
  • Norma Muñoz-Sevilla
  • Alejandra Cortés-Ruíz
Part of the Coastal Research Library book series (COASTALRL, volume 24)


Beaches respond in several time and space scales to physical phenomena like wind, waves, tides, storm-surges, littoral currents, river discharges and sea level rise. As a dynamical system they can also be changed due to the influence of biological, geological and chemical processes as well as human-related activities such as urban expansion and port development; construction of coastal protection infrastructure; resources extraction or production and, tourism related actions, among others. In order to properly manage the beaches, any proposed plan or program should preserve the natural structure and function of the beach. In this sense, coastal managers need to choose among several scenarios and managerial options based on the best scientific information available, and one of the most adequate method to do that -considering the cost/benefit-, is looking at the results of coastal simulation models. This paper is focused on coastal processes and review some empirical and numerical models emanated from the coastal engineering arena that can be useful in the practice of coastal management; identify the stages of management in which should be used; and proposes strategies for the proper implementation, monitoring and review of the modeling results, in the context of local beach management.


Beach management Beach changes Sediment movement Morphodynamic models 


  1. Aagaard T, Sorensen P (2013) Sea level rise and the sediment budget of an eroding barrier on the Danish North Sea coast. J Coast Res SI(65):434–439CrossRefGoogle Scholar
  2. Abuodha JOZ (2003) Grain size distribution and composition of modern dune and beach sediments, Malindi Bay coast, Kenya. J Afr Earth Sci 36:41–54CrossRefGoogle Scholar
  3. Almeida LP, Ferreira O, Taborda R (2011) Geoprocessing tool to model beach erosion due to storms: application to Faro beach (Portugal). J Coast Res SI64:1830–1834Google Scholar
  4. Azuz I (1999) La predicción de la respuesta temporal del perfil de playa como elemento fundamental de la gestión costera. Revista Ciencia y Mar 9:3–16Google Scholar
  5. Bruun P (1962) Sea level rise as a cause of shore erosion. J Waterw Port Coast Ocean Eng 88:117Google Scholar
  6. Burden RL, Faires JD (1998) Análisis numérico. International Thomson Editores, México, p 811Google Scholar
  7. Callaghan DP, Nielsen P, Short AD et al (2008) Statistical simulation of wave climate and extreme beach erosion. Coast Eng 55(5):375–390CrossRefGoogle Scholar
  8. Camacho-Valdéz V, Murillo-Jiménez J, Nava-Sánchez E et al (2008) Dune and Beach morphodynamics at Cabo Falso, Baja California Sur, Mexico: response to natural, Hurricane Juliette (2001) and anthropogenic influence. J Coast Res 24(3):553–560CrossRefGoogle Scholar
  9. Carranza-Edwards A, Rosales-Hoz L, Caso M et al (2004) La geología ambiental de la zona litoral. In: Caso M, Pisanti I, Ezcurra E (eds) Diagnóstico ambiental del Golfo de México, Volumen 1. SEMARNAT, INE, INECOL and Harte Research Institute, México, pp 571–601Google Scholar
  10. Cicin-Sain B, Knecht RW (1998) Integrated coastal and ocean management: concepts and practices. Island Press, Washington, DC/CoveloGoogle Scholar
  11. Dean RG (1977) Equilibrium beach profiles: U.S. Atlantic and Gulf coast. Department of Civil Engineering, Ocean Engineering Report, No. 12, University of DelawareGoogle Scholar
  12. Dean RG, Dalrymple RA (2002) Coastal processes with engineering applications. Cambridge University Press, CambridgeGoogle Scholar
  13. Do Nascimento AT, Pereira LCC (2016) Morphodynamic processes on a macrotidal beach in the Eastern Amazon. J Coast Res SI(75):427–431CrossRefGoogle Scholar
  14. EC (2004) Development of a guidance document on Strategic Environmental Assessment (SEA) and Coastal Erosion. Final Report DGENV European Commission, p 68Google Scholar
  15. Eckart C (1951) Surface waves on water of variable depth. University of California, Scripps Institution of Oceanography, Lecture notes, Wave Report No. 100, SIO Reference 51–12, pp 96Google Scholar
  16. Edelman T (1968) Dune erosion during storm conditions. Proceedings of the 11th international conference. Coastal Eng, ASCE, pp 719Google Scholar
  17. Edelman T (1970) Dune erosion during storm conditions. Proceedings of the 12th international conference. Coastal Eng, ASCE, pp 1305Google Scholar
  18. EUROSION (2004a) Living with coastal erosion in Europe: sediment and space for sustainability. PART I – Major findings and Policy Recommendations of the EUROSION project. RIKZ-EUCC-IGN-UAB-BRGM-IFEN-EADS, BrusselsGoogle Scholar
  19. EUROSION (2004b) Living with coastal erosion in Europe: sediment and space for sustainability. A guide to coastal erosion management practices in Europe. RIKZ-EUCC-IGN-UAB-BRGM-IFEN-EADS, BrusselsGoogle Scholar
  20. Frihy OE, Deabes EA, El Gindy AA (2010) Wave climate and nearshore processes on the Mediterranean cost of Egypt. J Coast Res 26(1):103–112CrossRefGoogle Scholar
  21. Gravois U, Callaghan D, Baldock T et al (2016) Review of beach profile and shoreline models applicable to the statistical modeling of beach erosion and the impacts of storm clustering. Geoscience Australia, Bushfire and Natural Hazards CRC, University of Queensland, AustraliaGoogle Scholar
  22. Hegde AV (2010) Coastal erosion and mitigation methods – global state of the art. Indian J Geo Mar Sci 39(4):521–530Google Scholar
  23. Horikawa K (1988) Nearshore dynamics and coastal processes. Theory, measurement, and predictive models. University of Tokyo Press, TokyoGoogle Scholar
  24. Kay R, Alder J (2005) Coastal planning and management. Taylor and Francis, Spon Text, London/New YorkGoogle Scholar
  25. Komar PD (1983) CRC handbook of coastal processes and erosion. CRC Press, Boca RatonGoogle Scholar
  26. Komar PD, Miller MC (1973) The threshold of sediment movement under oscillatory water waves. J Sediment Petrol 43(4):1101–1110CrossRefGoogle Scholar
  27. Kriebel DL, Dean RG (1993) Convolution method for time-dependent beach-profile response. J Waterw Port Coast Ocean Eng 119(2):204–226CrossRefGoogle Scholar
  28. Law AM, Kelton WD (1991) Simulation Modeling and Analysis. McGraw-Hill, New YorkGoogle Scholar
  29. Masselink G, Hughes MG (2003) Introduction to coastal processes & geomorphology. Arnold, Oxford University Press, New YorkGoogle Scholar
  30. Merino M (1987) The coastal zone of Mexico. Coast Manag 15:27–42CrossRefGoogle Scholar
  31. Morang A, Rosati JD, King DB (2013) Regional sediment processes, sediment supply, and their impact on Louisiana Coast. J Coast Res SI(63):141–165CrossRefGoogle Scholar
  32. Ortíz-Pérez MA, De la Lanza G (2006) Diferenciación del espacio costero de México: Un inventario regional. Serie Textos Universitarios, Número 3, Universidad Nacional Autónoma de México, México, D.FGoogle Scholar
  33. Palalane J, Larson M, Hanson H et al (2016) Coastal erosion in Mozambique: governing processes and remedial measures. J Coast Res 32(3):700–718CrossRefGoogle Scholar
  34. Pilkey OH, Neal WJ, Kelly JT et al (2011) The world’s beaches. A global guide to the sciences of the shoreline. University of California Press, Berkeley/Los Angles/LondonGoogle Scholar
  35. Ranasinghe R, Callaghan D, Roelvink D (2013) Does a more sophisticate storm erosion model improve probabilistic erosion estimates? Coast Dyn 2013:1277–1286Google Scholar
  36. Reeve D, Chadwick A, Fleming C (2004) Coastal engineering. Processes, theory and design practice. Spon Press, London/New YorkGoogle Scholar
  37. Rivera-Arriaga E, Villalobos G (2001) The coast of Mexico: approaches for its management. Ocean Coast Manag 44:729–756CrossRefGoogle Scholar
  38. Short AD (1999) Beaches. In: Short AD (ed) Handbook of beach and shoreface morphodynaics. Wiley, Chichester/New York/Winheim/Brisbane/Singapore/TorontoGoogle Scholar
  39. Silva-Casarín R, Mendoza-Baldwin E, Escalante-Mancera E (2003) Oleaje inducido por el huracán Wilma en Puerto Morelos, Quintana Roo, México. Ingeniería Hidráulica en México, XXIV(2):93–109Google Scholar
  40. Silva R, Villatoro MM, Ramos FJ et al (2014) Caracterización de la zona costera y planeamiento de elementos para la elaboración de criterios de regulación y manejo sustentable. Universidad Autónoma de México y SEMARNAT, MéxicoGoogle Scholar
  41. Silvester R, Hsu JRC (1993) Coastal stabilization. Advanced series on ocean engineering, vol 14. World Scientific, Singapore/New Jersey/London/Hong KongGoogle Scholar
  42. Soulsby R (1997) Dinamics of marine sands. Thomas Telford Publications, LondonGoogle Scholar
  43. Srisuwan C (2012) Size-selective sediment transport and cross-shore profile evolution in the nearshore zone. Ph D. thesis, School of Civil and Environmental Engineering, Georgia Institute of TechnologyGoogle Scholar
  44. Suh KD, Dalrymple RG (1987) Offshore breakwaters in laboratory and field. J Waterw Port Coast Ocean Eng 113(2):105–121CrossRefGoogle Scholar
  45. Taborda R, Ribeiro MA (2015) A simple model to estimate the impact of sea-level rise on platform beaches. Geomorphology 234:204–2010CrossRefGoogle Scholar
  46. UNEP-GPA (2003) Diagnosis of the erosion processes in the Caribbean sandy beaches. United Nations Environmental Program (UNEP), The NetherlandsGoogle Scholar
  47. Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, AmsterdamGoogle Scholar
  48. Williams SJ (2001) Coastal erosion and land loss around the United States: Strategies to manage and protect coastal resources- examples from Louisiana. In: Proceedings of the coastal ecosystems and federal activities technical training symposiumGoogle Scholar
  49. Woodroffe CD (2002) Coast. Form, process and evolution. Cambridge University Press, CambridgeGoogle Scholar
  50. Wright LD, Thom BG (1977) Coastal depositional landforms, a morphodynamic approach. Prog Phys Geogr 1:412–459CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Isaac Azuz-Adeath
    • 1
    Email author
  • Norma Muñoz-Sevilla
    • 2
  • Alejandra Cortés-Ruíz
    • 1
  1. 1.Centro de Enseñanza Técnica y Superior (CETYS Universidad)EnsenadaMéxico
  2. 2.Instituto Politécnico NacionalCiudad de MéxicoMéxico

Personalised recommendations